CFE-CMStatistics 2025: Start Registration
View Submission - CFE-CMStatistics 2025
A0155
Title: Hidden threshold models with applications to asymmetric cycles Authors:  Andrew Harvey - University of Cambridge (United Kingdom) [presenting]
Jerome Simons - University of Cambridge (United Kingdom)
Abstract: Threshold models are set up so that there is a switch between regimes for the parameters of an unobserved components model. When Gaussianity is assumed, the model is handled by the Kalman filter. The switching depends on a component crossing a boundary, and, because the component is not observed directly, the error in its estimation leads naturally to a smooth transition mechanism. A prominent example motivating thresholds is that of a cyclical time series characterized by a downturn that is more or less rapid than the upturn. The situation is illustrated by fitting a model with three potentially asymmetric cycles, each with its own threshold, to observations on ice volume in Antarctica since 799,000 BCE. The model is able to produce multi-step forecasts with associated prediction intervals. A second example shows how a hidden threshold model is able to deal with the asymmetric cycle in monthly US unemployment.