EcoSta 2023: Start Registration
View Submission - EcoSta2023
A0739
Title: Gibbs sampling for mixtures in order of appearance: The ordered allocation sampler Authors:  Pierpaolo De Blasi - University of Torino and Collegio Carlo Alberto (Italy) [presenting]
Maria Fernanda Gil-Leyva Villa - IIMAS,UNAM (Mexico)
Abstract: Gibbs sampling methods are standard tools to perform posterior inference for mixture models. These have been broadly classified into two categories: marginal and conditional methods. While conditional samplers are more widely applicable than marginal ones, they may suffer from slow mixing in infinite mixtures, where some form of truncation, either deterministic or random, is required. In mixtures with a random number of components, the exploration of parameter spaces of different dimensions can also be challenging. These issues are tackled by expressing the mixture components in the random order of appearance in an exchangeable sequence directed by the mixing distribution. A sampler that is straightforward is derived from implementing mixing distributions with tractable size-biased ordered weights, and that can be readily adapted to mixture models for which marginal samplers are not available. In infinite mixtures, no form of truncation is necessary. As for finite mixtures with random dimensions, a simple updating of the number of components is obtained by a blocking argument, thus, easing challenges found in transdimensional moves via Metropolis-Hastings steps. Additionally, sampling occurs in the space of ordered partitions with blocks labelled in the least element order, which endows the sampler with good mixing properties. The performance of the proposed algorithm is evaluated in a simulation study.