EcoSta 2023: Start Registration
View Submission - EcoSta2023
A1144
Title: A two-way heterogeneity model for dynamic networks Authors:  Binyan Jiang - The Hong Kong Polytechnic University (Hong Kong) [presenting]
Abstract: Analysis of networks that evolve dynamically requires the joint modelling of individual snapshots and time dynamics. A new flexible two-way heterogeneity model towards this goal is proposed. The new model equips each network node with two heterogeneity parameters, one to characterize the propensity to form ties with other nodes statically and the other to differentiate the tendency to retain existing ties over time. With $n$ observed networks each having $p$ nodes, a new asymptotic theory is developed for the maximum likelihood estimation of $2p$ parameters when $np\rightarrow \infty$. The negative log-likelihood function's global non-convexity is overcome by its local convexity, and propose a novel method of moment estimator as the initial value for a simple algorithm that leads to the consistent local maximum likelihood estimator (MLE). To establish the upper bounds for the estimation error of the MLE, a new uniform deviation bound is derived, which is of independent interest. The theory of the model and its usefulness are further supported by extensive simulation and a data analysis examining the social interactions of ants.