EcoSta 2023: Start Registration
View Submission - EcoSta2023
A1040
Title: On factor copula-based mixed regression models Authors:  Pavel Krupskiy - Melbourne University (Australia) [presenting]
Bouchra Nasri - University of Montreal (Canada)
Bruno N Remillard - HEC Montreal (Canada)
Abstract: A copula-based method for mixed regression models is introduced, where the conditional distribution of the response variable, given covariates, is modelled by a parametric family of continuous or discrete distributions, and the effect of a common latent variable pertaining to a cluster is modelled with a bivariate copula. It is shown how to estimate the parameters of the copula and the parameters of the margins, and the asymptotic behaviour of the estimation errors is found. Numerical experiments are performed to assess the precision of the estimators for finite samples. An example of an application is given using dengue data from several countries.