EcoSta 2018: Registration
View Submission - EcoSta2018
A0532
Title: Bootstrapping spectral statistics in high dimensions Authors:  Miles Lopes - UC Davis (United States) [presenting]
Andrew Blandino - UC Davis (United States)
Alexander Aue - UC Davis (United States)
Abstract: Spectral statistics play a central role in many multivariate testing problems. It is therefore of interest to approximate the distribution of functions of the eigenvalues of sample covariance matrices. Although bootstrap methods are an established approach to approximating the laws of spectral statistics in low-dimensional problems, these methods are relatively unexplored in the high-dimensional setting. The aim is to focus on linear spectral statistics (LSS) as a class of ``prototype statistics'' for developing a new bootstrap method in the high-dimensional setting. In essence, the method originates from the parametric bootstrap, and is motivated by the notion that, in high dimensions, it is difficult to obtain a non-parametric approximation to the full data-generating distribution. From a practical standpoint, the method is easy to use, and allows the user to circumvent the difficulties of complex asymptotic formulas for LSS. In addition to proving the consistency of the proposed method, we provide encouraging empirical results in a variety of settings. Lastly, and perhaps most interestingly, we show through simulations that the method can be applied successfully to statistics outside the class of LSS, such as the largest sample eigenvalue and others.