KEYNOTE TALKS (UTC+1)
Keynote talk I | Tuesday 22.8.2023 | 09:00 - 10:00 | Room: CLO B01 |
Multi-objective optimisation of restricted randomised designs | |||
Speaker: K. Mylona | Chair: Maria Brigida Ferraro | ||
Keynote talk II | Tuesday 22.8.2023 | 18:00 - 18:55 | Room: CLO B01 |
The historical role of energy in UK inflation and productivity | |||
Speaker: D. Hendry | Chair: Francisco Javier Rubio | ||
Keynote talk III | Friday 25.8.2023 | 12:10 - 13:10 | Room: BCB 307 |
Subject prevalence in documents based on topic modeling | |||
Speaker: A. Colubi Co-authors: L. Kontoghiorghes | Chair: David Weston |
PARALLEL SESSIONS (UTC+1)
Parallel session B: COMPSTAT2023 | Tuesday 22.8.2023 | 10:30 - 12:30 |
Session CO015 | Room: BCB 311 |
Categorical and high-dimensional data analysis | Tuesday 22.8.2023 10:30 - 12:30 |
Chair: Mark De Rooij | Organizer: Mark De Rooij, Rosaria Lombardo |
A0216: J. Nienkemper-Swanepoel, N. Le Roux, S. Lubbe | |
The impact of (un)congenial multiple imputation approaches on GPAbin biplots | |
A0230: M. Gallo | |
A strategy for improving the speed in tensor decomposition analysis | |
A0244: T.-W. Wang, E. Beh, R. Lombardo | |
Assessing dispersion in a two-way contingency table under profile transformations and reciprocal averaging | |
A0253: M. De Rooij | |
Logistic multidimensional data analysis for ordinal response variables using a cumulative link function | |
A0287: A. Iodice D Enza, M. van de Velden, C. Cavicchia, A. Markos | |
Association-based distances for categorical and mixed-type data |
Session CO112 | Room: Virtual room R01 |
Tutorial I | Tuesday 22.8.2023 10:30 - 12:30 |
Chair: Alessandra Luati | Organizer: COMPSTAT |
A0179: A. Luati | |
Dynamic models for multiple quantiles |
Session CC073 | Room: BCB 307 |
Spatial statistics | Tuesday 22.8.2023 10:30 - 12:30 |
Chair: Klaus Nordhausen | Organizer: COMPSTAT |
Session CC062 | Room: BCB 308 |
Biostatistics | Tuesday 22.8.2023 10:30 - 12:30 |
Chair: Stefan Van Aelst | Organizer: COMPSTAT |
A0326: M. Misumi, H. Sugiyama | |
A multi-state modeling with Poisson regression utilizing grouped data in a radiation epidemiological study | |
A0379: K. Le Gall, L. Bellanger, A. Stamm, D. Laplaud | |
Generation of synthetic mixed data for multiple sclerosis patients: Application to gait data and EDSS score | |
A0340: H. Kobayashi, M. Okabe, H. Yadohisa | |
Dimensionality reduction for multi-omics data using the Freeman-Tukey transformation | |
A0319: P. Arsenteva, M.A. Benadjaoud, H. Cardot | |
Estimating the linear relation between variables that are never jointly observed: An application to in vivo experiments | |
A0325: R. Coletti, M. Lopes, S. Martins | |
Network inference and robust clustering on high-dimensional data to investigate molecular heterogeneity in glioma |
Session CC030 | Room: BCB 310 |
Time series | Tuesday 22.8.2023 10:30 - 12:30 |
Chair: Matus Maciak | Organizer: COMPSTAT |
A0185: M.T. Kurbucz, A. Jakovac, P. Posfay | |
Linear law-based feature space transformation | |
A0186: W.-Y. Wu | |
Regularized nonlinear regression with dependent errors and its application to a biomechanical model | |
A0364: N. Zakiyeva | |
High-dimensional high-frequency time series prediction model solved with a mixed integer optimisation method | |
A0386: V. Pastukhov | |
Fused lasso nearly-isotonic signal approximation in general dimensions | |
A0389: M. Kilinc, M. Massmann | |
The modified conditional sum-of-squares estimator for fractionally integrated models |
Parallel session C: COMPSTAT2023 | Tuesday 22.8.2023 | 14:15 - 15:45 |
Session CO016 | Room: BCB 307 |
Bayesian methods | Tuesday 22.8.2023 14:15 - 15:45 |
Chair: TBA | Organizer: Cathy W-S Chen |
A0275: , J. Nakajima | |
Time-varying parameter heterogeneous autoregressive model with stochastic volatility | |
A0290: F.C. Liu, C.W.-S. Chen, H.-H. Hsu | |
Bayesian model selection among dispersed integer-valued time series models | |
A0291: T.-H. Fan, Y.-S. Dong, C.-Y. Peng | |
A complete Bayesian degradation analysis based on inverse Gaussian processes | |
A0315: C.-H. Weng | |
Rating of players by Laplace approximation and dynamic modeling |
Session CO028 | Room: BCB 310 |
Rank-based inference, feature selection, and data consolidation | Tuesday 22.8.2023 14:15 - 15:45 |
Chair: Valeria Vitelli | Organizer: Michael Georg Schimek |
A0195: P. Yu, Y. Zhuang | |
Modeling of preference data with multiple network views | |
A0256: V. Vitelli | |
Rank-based Bayesian joint variable selection and clustering of genome-wide transcriptomic data | |
A0237: M. La Rocca, B. Pfeifer, M.G. Schimek | |
Bootstrap inference for signal reconstruction from multiple ranked lists |
Session CO026 | Room: BCB 311 |
CMStatistics session: Statistical analysis of complex data | Tuesday 22.8.2023 14:15 - 15:45 |
Chair: Enea Bongiorno | Organizer: Xuming He |
A0155: L. Li | |
Kernel ordinary differential equations | |
A0161: P. Nag | |
Spatio-temporal deepkriging for interpolation and probabilistic forecasting | |
A0227: M. Karemera, S. Guerrier, S. Orso, M.-P. Victoria-Feser, Y. Zhang, Y. Ma | |
A flexible bias correction method based on inconsistent estimators | |
A0239: E. Bura, A. Kofnov, E. Bartocci, M. Moosbrugger, M. Stankovic | |
Exact and approximate moment derivation for probabilistic loops with non-polynomial assignments |
Session CO017 | Room: Virtual room R01 |
Statistical methods for spatial and spatio-temporal data | Tuesday 22.8.2023 14:15 - 15:45 |
Chair: Hsin-Cheng Huang | Organizer: Hsin-Cheng Huang |
A0165: J. Zhu | |
Scalable semiparametric spatio-temporal regression for large data analysis | |
A0215: J. Yang | |
On minimum contrast method for multivariate spatial point processes | |
A0359: C.-S. Chen, C.-W. Shen | |
ZIP-like models for spatial count processes | |
A0269: H.-C. Huang | |
Nonstationary spatial modeling, estimation, and prediction using a divide-and-conquer approach |
Session CC053 | Room: BCB 308 |
Statistical modelling and inference | Tuesday 22.8.2023 14:15 - 15:45 |
Chair: Mark De Rooij | Organizer: COMPSTAT |
A0158: A. Muhammad, S. Ahmad | |
A new proposal to mitigate multicollinearity in linear regression models | |
A0173: S. Ferreira, D. Ferreira | |
Unbiased estimators of the cumulants under bi-additive models | |
A0301: S. Guenay | |
Analysis of parameter and partial parameter impacts | |
A0328: Y. Iguchi, A. Beskos, M. Graham | |
Parameter estimation with increased precision for elliptic and hypo-elliptic diffusions |
Parallel session D: COMPSTAT2023 | Tuesday 22.8.2023 | 16:15 - 17:45 |
Session CI003 (Special Invited Session) | Room: BCB 307 |
Bayesian nonparametric methods and computing | Tuesday 22.8.2023 16:15 - 17:45 |
Chair: Michele Guindani | Organizer: Michele Guindani |
A0400: L. Dalla Valle, R. Barone | |
Bayesian nonparametric inference for conditional vine copulas | |
A0401: F. Camerlenghi, A. Colombi, L. Paci, R. Argiento | |
Mixture modeling via vectors of normalized independent finite point processes | |
A0408: Y. Raykov | |
Adaptive latent feature sharing for piecewise lineardimensionality reduction |
Session CO027 | Room: BCB 309 |
Recent advances in statistical learning | Tuesday 22.8.2023 16:15 - 17:45 |
Chair: Thierry Chekouo | Organizer: Alejandro Murua |
A0193: D. Larocque, C. Alakus, A. Labbe | |
Covariance regression with random forests | |
A0248: S. Vicente | |
Clustering with diversity: A promising approach with the determinantal point process | |
A0266: A. Ali, A. Bhullar, K. Nadeem | |
Multi-crop land suitability prediction from remote sensing data using semi-supervised learning | |
A0247: T. Chekouo | |
A Bayesian variable selection approach incorporating prior feature ordering and population structures |
Session CO019 | Room: BCB 310 |
Data depth: A focus on computation and anomaly detection | Tuesday 22.8.2023 16:15 - 17:45 |
Chair: Pavlo Mozharovskyi | Organizer: Pavlo Mozharovskyi |
A0258: S. Hopkins | |
Mean estimation, differential privacy, and the sum of squares method | |
A0231: R. Dyckerhoff, S. Nagy | |
An efficient algorithm for computing the angular halfspace depth of a whole sample | |
A0252: S. Nagy | |
Exact computation of the scatter halfspace depth | |
A0251: G. Staerman | |
Affine-invariant integrated rank-weighted depth: Definition, properties and finite sample analysis |
Session CC086 | Room: BCB 308 |
Multivariate statistics | Tuesday 22.8.2023 16:15 - 17:45 |
Chair: Ray-Bing Chen | Organizer: COMPSTAT |
A0188: P.O. Obanya, R. Coetzer, C. Olivier, T. Verster | |
Variable contribution analysis in multivariate process monitoring using permutation entropy | |
A0172: D. Ferreira, S. Ferreira | |
Optimizing allocation rules in discrete and continuous discriminant analysis | |
A0320: T.-L. Chen | |
Variable selection via information gain | |
A0365: R. Motegi, Y. Seki | |
Variable discretization-based screening for high dimensional data |
Session CC110 | Room: BCB 311 |
Time series in applications | Tuesday 22.8.2023 16:15 - 17:45 |
Chair: Niklas Ahlgren | Organizer: COMPSTAT |
A0330: A. Hanebeck, C. Czado | |
Multivariate analysis of mortality data using time-varying copula state space models | |
A0347: S. Tavares, L. Krippahl, M. Lopes | |
Feature extraction from satellite data for multivariate time-series forecasting of biotoxin contamination in shellfish | |
A0377: C.S. Santos, I. Pereira | |
A periodic integer-valued time series with an application to fire activity | |
A0393: V. Mendes, D. Mendes | |
Nonlinear factor analysis for large sets of macroeconomic time series |
Parallel session F: COMPSTAT2023 | Wednesday 23.8.2023 | 09:00 - 10:30 |
Session CI006 (Special Invited Session) | Room: Virtual room R01 |
Modern statistical analysis for dependent data | Wednesday 23.8.2023 09:00 - 10:30 |
Chair: Mike So | Organizer: Mike So |
A0181: R. Ganey | |
High-dimensional LDA biplot through the GSVD | |
A0234: P. Menendez, M.J. Barcena, M.C. Gonzalez, F. Tusell | |
Have house prices factored in the risks of climate change? | |
A0242: R. Lombardo, E. Beh, A. Ceriello, G. Lucisano, F. Prattichizzo, A. Nicolucci | |
Visualizing departures from symmetry: A study on cardiovascular risk among patients with diabetes | |
A0310: M. Mayrhofer, P. Filzmoser | |
Explainable outlier detection based on Shapley values |
Session CC046 | Room: BCB 309 |
Machine learning | Wednesday 23.8.2023 09:00 - 10:30 |
Chair: Peter Winker | Organizer: COMPSTAT |
A0204: G.-H. Huang | |
Multiclass machine learning classification of functional brain images for Parkinson's disease stage prediction | |
A0217: M. Waltz, O. Okhrin | |
Two-sample testing in reinforcement learning | |
A0361: C.J. Perez Sanchez, L. Naranjo, V. Miranda, J. Hernandez | |
Generalized additive models for multiclass detection of voice disorders by using acoustic features | |
A0369: C. Lehner | |
On the ability of random forests to model interactions |
Session CC033 | Room: BCB 310 |
Algorithms and computational methods | Wednesday 23.8.2023 09:00 - 10:30 |
Chair: Dominik Liebl | Organizer: COMPSTAT |
A0296: R. Valla, P. Mozharovskyi, F. d Alche-Buc | |
Anomaly component analysis: Visualization and interpretability for anomaly detection | |
A0298: S. Dominique, V. Cariou, M. Hanafi, J.-M. Ferrandi, F. Llobell | |
A simple and direct procedure for data generation in PLS-SEM framework | |
A0302: H.-M. Wu | |
dataSDA and ggESDA: Two R packages for exploratory symbolic data analysis |
Session CC057 | Room: BCB 311 |
Semi- and nonparametric methods | Wednesday 23.8.2023 09:00 - 10:30 |
Chair: Ivan Kojadinovic | Organizer: COMPSTAT |
A0321: M. Kitani, K. Yuasa, H. Murakami | |
Prediction of order statistics based on ordered generalized ranked set sampling | |
A0334: G.-N. Brunotte | |
A measure for the degree of distribution changes in locally stationary processes | |
A0372: S. Zhu, A. Celisse | |
Bandwidth selection method for estimating difference between two densities with kernel density estimation | |
A0207: I. Kojadinovic, M. Holmes, A. Verhoijsen | |
Open-end monitoring for multivariate observations sensitive to all types of changes in the distribution function |
Parallel session G: COMPSTAT2023 | Wednesday 23.8.2023 | 11:00 - 12:30 |
Session CI004 (Special Invited Session) | Room: BCB 307 |
Change-point analysis | Wednesday 23.8.2023 11:00 - 12:30 |
Chair: Ivan Kojadinovic | Organizer: Ivan Kojadinovic |
A0156: C. Kirch, H. Cho | |
Data segmentation: Moving-sum-procedures and bootstrap confidence intervals | |
A0199: T. Wang | |
Sparse change detection in high-dimensional linear regression | |
A0240: G. Rice, A. Aue, L. Horvath, Y. Zhao, J. Vander Does, O. Sonmez | |
Change point analysis of functional time series |
Session CO008 | Room: BCB 309 |
Causal inference and functional data analysis | Wednesday 23.8.2023 11:00 - 12:30 |
Chair: Nicolas Hernandez | Organizer: Nicolas Hernandez |
A0191: D. Liebl, T. Mensinger | |
Causal inference with functional data | |
A0224: K. Ecker, X. de Luna, L. Schelin | |
Causal inference with a functional outcome | |
A0226: E. Solea | |
High-dimensional nonparametric functional graphical models via the functional additive partial correlation operator | |
A0263: S. Greven, L. Steyer, A. Stoecker | |
Elastic linear regression for curves in $R^d$ |
Session CO025 | Room: BCB 310 |
HiTEc session: Advances in statistics for finance | Wednesday 23.8.2023 11:00 - 12:30 |
Chair: Massimiliano Caporin | Organizer: Alessandra Amendola, Massimiliano Caporin |
A0286: G. Bonaccolto, R. Riccobello, P.J. Kremer, S. Paterlini, M. Bogdan | |
Sparse graphical modelling for minimum variance portfolios | |
A0223: B. Sanhaji | |
Nonlinear scalar BEKK | |
A0225: M. Puke, T. Dimitriadis | |
Forecast calibration, backtests, and score decompositions for Value-at-Risk | |
A0174: M. Caporin, G. Storti | |
Penalized CAW, forecast error variance decompositions and systemic risk measurement |
Session CO100 | Room: Virtual room R01 |
Clustering and regression analysis of complex real-life data | Wednesday 23.8.2023 11:00 - 12:30 |
Chair: Gabriele Soffritti | Organizer: Gabriele Soffritti |
A0218: S.D. Tomarchio, A. Punzo, L. Bagnato | |
Mixture models for heavy-tailed tensor-variate data | |
A0261: V. Vandewalle, M. du Roy de Chaumaray | |
Non-parametric multi-partitions clustering | |
A0272: G. Babu | |
Model based labelling of hyperspectral food images | |
A0259: G. Soffritti, G. Perrone | |
Mixtures of linear regression models: An application to housing tension in Emilia-Romagna, Italy |
Session CC082 | Room: BCB 311 |
High-dimensional statistics | Wednesday 23.8.2023 11:00 - 12:30 |
Chair: Maria Brigida Ferraro | Organizer: COMPSTAT |
A0341: N. Makigusa | |
Two-sample test based on the variance of a positive definite kernel | |
A0208: N. Chakraborty, C.F. Lui, M. Ahmed | |
A distribution-free change-point monitoring scheme in high-dimensional settings | |
A0370: H. Choi, Q. Mai | |
Skew-normal classification in high-dimensional data | |
A0333: H. Kwon, Y. Liao, J. Choi | |
Inference for low-rank models without rank estimation |
Parallel session H: COMPSTAT2023 | Wednesday 23.8.2023 | 14:15 - 15:45 |
Session CV072 | Room: Virtual room R01 |
Spatial statistics | Wednesday 23.8.2023 14:15 - 15:45 |
Chair: Ivan Kojadinovic | Organizer: COMPSTAT |
A0329: M. Hediger, R. Furrer | |
Asymptotic analysis of ML-covariance parameter estimators based on covariance approximations | |
A0346: Z. Quiroz, M. Prates, D. Dey, H. Rue | |
Fast Bayesian inference of block nearest neighbor Gaussian models for large data | |
A0171: S. Kim, M. Kaiser, X. Dai | |
A generalized functional linear model with spatial dependence |
Session CO104 | Room: BCB 308 |
Statistics for data science | Wednesday 23.8.2023 14:15 - 15:45 |
Chair: Luis Alberto Firinguetti Limone | Organizer: Luis Alberto Firinguetti Limone |
A0166: D.F. Munoz | |
Estimation of expectations in two-level nested simulation experiments | |
A0178: P. Canas Rodrigues | |
Bayesian spatio-temporal modeling of the Brazilian wildfires: The influence of human and meteorological variables | |
A0197: M. Bohorquez | |
Building and classifying brain images | |
A0200: L.A. Firinguetti Limone, L. Gomez | |
Shrinkage estimators for beta regression models |
Session CO107 | Room: BCB 309 |
Advances in multi-view learning and mixture models | Wednesday 23.8.2023 14:15 - 15:45 |
Chair: Angela Montanari | Organizer: Angela Montanari |
A0241: S. Dallari, L. Anderlucci, A. Montanari | |
Finding groups in microbiome data according to multiple data-views | |
A0288: K. Van Deun | |
Finding the hidden link: Statistical methods for multi-view high-dimensional data | |
A0167: O. Laverny, P. Lambert | |
Local moment matching with Gamma mixtures under automatic smoothness penalization | |
A0327: P. Duttilo, S.A. Gattone, A. Kume | |
Mixtures of generalised normal distribution with constraints |
Session CO103 | Room: BCB 310 |
Dynamic networks | Wednesday 23.8.2023 14:15 - 15:45 |
Chair: Philip Yu | Organizer: Philip Yu |
A0159: J. Gu, G. Yin | |
Triangular concordance learning of networks | |
A0189: B. Jiang | |
A two-way heterogeneity model for dynamic networks | |
A0284: G. Li | |
High-dimensional low-rank linear time series modeling | |
A0358: V. Batagelj | |
Analysis of weighted temporal networks represented by time slices |
Session CO101 | Room: BCB 311 |
Novel perspectives in Bayesian statistics | Wednesday 23.8.2023 14:15 - 15:45 |
Chair: Gavino Puggioni | Organizer: Pier Giovanni Bissiri |
A0198: P. White, P.G. Bissiri, E. Porcu, G. Cleanthous, A. Alegria | |
Multivariate isotropic random fields on spheres: Nonparametric Bayesian modeling and $L_p$ fast approximations | |
A0202: D. Frazier | |
Reliable Bayesian inference in misspecified models | |
A0265: G. Puggioni, M. Cannas | |
On the Voigt distribution: Characterization and parameter estimation | |
A0350: D. Christensen, P.A. Moen | |
Fast implementation of a general importance sampling algorithm for Bayesian nonparametric models with binary responses |
Parallel session I: COMPSTAT2023 | Thursday 24.8.2023 | 09:00 - 10:00 |
Session CC114 | Room: BCB 307 |
Generalized linear models | Thursday 24.8.2023 09:00 - 10:00 |
Chair: Sara Taskinen | Organizer: COMPSTAT |
A0345: V. Asimit, A. Badescu, F. Zhou | |
Efficient and proper GLM modelling with power link functions | |
A0362: C. Kleiber, S. Acemoglu, J. Urban | |
Variable importance in generalized linear models: A unifying view using Shapley values | |
A0378: L. Maestrini, F. Hui, A. Welsh | |
Restricted maximum likelihood estimation in generalized linear mixed models |
Session CC061 | Room: BCB 308 |
Design of experiments | Thursday 24.8.2023 09:00 - 10:00 |
Chair: Peter Winker | Organizer: COMPSTAT |
A0311: S. Gilmour, P.-W. Tsai | |
Optimal two-level designs under model uncertainty | |
A0351: S. Alzahrani | |
Nonlinear models for mixture experiments including process variables | |
A0390: E. Fackle-Fornius, F. Miller | |
Efficient calibration of items in mixed format achievement tests using optimal design methodology |
Session CC109 | Room: BCB 309 |
Time series econometrics | Thursday 24.8.2023 09:00 - 10:00 |
Chair: Davide La Vecchia | Organizer: COMPSTAT |
A0162: D. Buncic | |
On a standard method for measuring the natural rate of interest | |
A0169: C.-A. Liu, T.-C. Lin | |
Model averaging prediction for possibly nonstationary autoregressions | |
A0308: J. Han, A. Alexander John McNeil, A. Dias, M. Bladt | |
Semiparametric forecasting using non-Gaussian ARMA models based on s-vines |
Session CC037 | Room: BCB 310 |
Bayesian statistics | Thursday 24.8.2023 09:00 - 10:00 |
Chair: Eva Cantoni | Organizer: COMPSTAT |
A0366: V. Giagos | |
Bayesian inference of sampling weights in COVID-19 testing | |
A0335: H. Hachem, I. Albert | |
PCBs intake assessment using a general Bayesian network depending on the meat safety monitoring system | |
A0349: H. Pazira, M. Jonker, T. Coolen | |
Federated Bayesian inference for time-to-event data |
Session CC034 | Room: BCB 311 |
Computational and financial econometrics | Thursday 24.8.2023 09:00 - 10:00 |
Chair: Massimiliano Caporin | Organizer: COMPSTAT |
A0151: L.A. Arteaga Molina, J.M. Rodriguez-Poo | |
Testing beta constancy in capital asset pricing models | |
A0360: N. Ahlgren, A. Back, T. Terasvirta | |
Sup-tests against time-varying GARCH models | |
A0153: E. Iglesias | |
Asymptotic inference for new double autoregressive models |
Parallel session J: COMPSTAT2023 | Thursday 24.8.2023 | 10:30 - 12:30 |
Session CO113 | Room: BCB 307 |
Tutorial II | Thursday 24.8.2023 10:30 - 12:30 |
Chair: Francisco Javier Rubio | Organizer: COMPSTAT |
A0406: F.J. Rubio | |
Bayesian variable selection for survival data: Theory, methods, software and applications |
Session CO012 | Room: BCB 308 |
New trends for statistical computing: Bayesian and symbolic data analysis | Thursday 24.8.2023 10:30 - 12:30 |
Chair: Yuichi Mori | Organizer: Yuichi Mori |
A0254: J. Nakano, N. Shimizu, Y. Yamamoto | |
Chestnut plot to visualize aggregated symbolic data | |
A0187: L.-C. Lin, M. Guo, S. Lee | |
Monitoring photochemical pollutants based on symbolic interval-valued data analysis | |
A0211: S.-H. Wang, H.-H. Huang, R. Bai | |
Mixed-type multivariate Bayesian sparse variable selection with shrinkage priors | |
A0212: C. Kim | |
Bayesian nonparametric methods for causal effects with intermediate variables | |
A0175: M.H. Ling | |
On reliability analysis of one-shot device testing data with defects |
A0183: M. Maciak, S. Vitali | |
Detection and estimation of changepoints within time-dependent functional profiles | |
A0233: M. Wendler, L. Wegner | |
Dependent wild bootstrap for change-point detection in functional time series and random fields | |
A0170: J. Kalina | |
The minimum weighted covariance determinant estimator for high-dimensional data | |
A0221: O. Okhrin, M. Fengler | |
Adaptive factor modeling | |
A0182: M. Pesta, S. Hudecova | |
Semi-continuous time series for sparse data with volatility clustering |
Session CC065 | Room: BCB 309 |
Robust methods | Thursday 24.8.2023 10:30 - 12:30 |
Chair: Sara Taskinen | Organizer: COMPSTAT |
A0273: S.A. Abbasi, M. Amouna | |
Robust monitoring of process dispersion | |
A0309: P. Mozharovskyi, J. Ivanovs | |
Distributionally robust halfspace depth | |
A0289: M. Marozzi | |
A robust combined nonparametric method for comparing two locations | |
A0184: C. Baum, A. Van Messem, H. Cevallos-Valdiviezo | |
Robustness under missing data: A comparison with special attention to inference | |
A0339: R. Hieda, S. Yuki, K. Tanioka, H. Yadohisa | |
Estimation of treatment effects based on robust sparse reduced-rank regression |
Session CC111 | Room: BCB 311 |
Applied econometrics | Thursday 24.8.2023 10:30 - 12:30 |
Chair: Massimiliano Caporin | Organizer: COMPSTAT |
A0367: E. Gosinska, K. Leszkiewicz-Kedzior, A. Welfe | |
The asymmetry in the process of price formation: Threshold cointegration analysis | |
A0402: J.-H. KO | |
Revisiting the sources of U.S. imbalances: Wavelet approach | |
A0387: L. Petrasek | |
US equity announcement risk premia | |
A0318: J. Kukacka | |
Good and bad volatility in cryptocurrencies: Connectedness, asymmetry, and their drivers | |
A0356: P. Caraiani | |
High frequency financial network connectedness and monetary policy shocks |
Session CP001 | Room: Poster session |
Poster Session | Thursday 24.8.2023 10:30 - 12:30 |
Chair: Cristian Gatu | Organizer: COMPSTAT |
A0214: M.-S. Oh | |
BayMDS: An R package for Bayesian multidimensional scaling and choice of dimension | |
A0267: S. Shvydka, V. Sarabeev, M. Ovcharenko, M. Zdimalova | |
Modelling symbiotic species richness from invertebrate aquatic hosts using generalized linear and additive models | |
A0332: L. Sablica, K. Hornik, J. Leydold | |
watson: An R package for fitting mixtures of Watson distributions | |
A0385: K. Takahashi | |
Comparing F1-scores of more than two binary medical tests | |
A0323: S. Park, A. Bensoussan | |
Optimal consumption and investment with independent stochastic labor income |
Parallel session K: COMPSTAT2023 | Thursday 24.8.2023 | 14:15 - 15:45 |
Session CV032 | Room: BCB 311 |
Machine learning and computational methods | Thursday 24.8.2023 14:15 - 15:45 |
Chair: Rosaria Lombardo | Organizer: COMPSTAT |
A0373: G. Saraceno, M. Markatou | |
Goodness-of-fit and clustering of spherical and directional data: A comprehensive R package | |
A0285: A. Bhatti | |
Fairness in machine learning in the presence of missing values | |
A0306: M. Savino, C. Levy-Leduc | |
A novel approach for estimating functions in the multivariate setting based on an adaptive knot selection for B-splines | |
A0363: S. Hoejsgaard, M.M. Andersen | |
Computer algebra systems in R |
Session CI002 (Special Invited Session) | Room: BCB 307 |
Robust statistics for modern inference problems | Thursday 24.8.2023 14:15 - 15:45 |
Chair: Eva Cantoni | Organizer: Eva Cantoni |
A0168: I. Wilms, G. Louvet, J. Raymaekers, G. Van Bever | |
The influence function of graphical lasso estimators | |
A0190: D. La Vecchia | |
Some aspects of robust optimal transportation, with applications to statistics and machine learning | |
A0280: S. Muller, P. Su, T. Garth, S. Wang | |
Robust cellwise regularized sparse regression |
Session CO013 | Room: BCB 308 |
New developments in Bayesian analysis | Thursday 24.8.2023 14:15 - 15:45 |
Chair: Ray-Bing Chen | Organizer: Ray-Bing Chen |
Session CO106 | Room: BCB 310 |
HiTEc session: Advances in functional data | Thursday 24.8.2023 14:15 - 15:45 |
Chair: Enea Bongiorno | Organizer: Enea Bongiorno, Kwo Lik Lax Chan |
A0312: K.L.L. Chan | |
On specifying a link function of a single functional index model | |
A0209: K. Hron, C. Genest, J. Neslehova | |
Orthogonal decomposition of multivariate densities in Bayes spaces in context of functional data analysis | |
A0222: S. Otto, A. Kneip, D. Liebl | |
Combining concurrent and functional linear regression | |
A0245: G. Van Bever, J.M. Jeon | |
Additive regression with general imperfect variables |
Session CC050 | Room: BCB 309 |
Forecasting | Thursday 24.8.2023 14:15 - 15:45 |
Chair: Nicolas Hernandez | Organizer: COMPSTAT |
A0374: T. Zahn, M.-O. Pohle | |
Skill scores, predictive power and limits of predictability | |
A0392: M. Carannante, V. D Amato, S. Haberman, M. Menzietti | |
A strong link between mortality projections and frailty in Lee Carter model | |
A0396: M. Arro-Cannarsa, R. Scheufele | |
Nowcasting GDP in Switzerland: What are the gains from machine learning algorithms? | |
A0394: D. Mendes, V. Mendes, N. Ferreira | |
Multivariate forecast for financial stock prices: A hybrid VAR-LSTM deep learning model |
Parallel session L: COMPSTAT2023 | Thursday 24.8.2023 | 16:15 - 17:45 |
Session CV044 | Room: Virtual room R01 |
Applied statistics and econometrics | Thursday 24.8.2023 16:15 - 17:45 |
Chair: Rosaria Lombardo | Organizer: COMPSTAT |
A0357: L. Donayre, L. Loomer | |
The transitory component of health care employment | |
A0381: M. Nguyen | |
Financial distress prediction using machine learning: When Altman meets Merton in a transition economy | |
A0283: J. Zou, O. Okhrin, M. Odening | |
Data-driven optimal phase division for improved weather index insurance design | |
A0313: M. Fayaz | |
Studying the COVID-19 lockdown effects on Iranian traffic behavior in three calendars with functional data analysis |
Session CI005 (Special Invited Session) | Room: BCB 307 |
Bayesian models: Inference and applications | Thursday 24.8.2023 16:15 - 17:45 |
Chair: Ioanna Manolopoulou | Organizer: Ioanna Manolopoulou |
A0348: M. Daniels, W. Bae | |
A Bayesian non-parametric approach for causal mediation with a post-treatment confounder | |
A0397: R. Hahn | |
Bayesian regression tree ensembles for survival analysis | |
A0404: A. Franks, A. Alex | |
Sensitivity to unobserved confounding in studies with factor-structured outcomes |
Session CO021 | Room: BCB 309 |
Statistics and data analytics | Thursday 24.8.2023 16:15 - 17:45 |
Chair: Stefan Van Aelst | Organizer: Stefan Van Aelst |
A0317: E. Bongiorno, K.L.L. Chan, A. Goia | |
Non-parametric dimensionality detection for functional data | |
A0354: L. Insolia, S. Guerrier, M.-P. Victoria-Feser, Y. Ma, Y. Boulaguiem, D.-L. Couturier | |
Multivariate finite-sample adjustments for equivalence testing | |
A0294: R. Yao, J. Raymaekers, P. Rousseeuw, T. Verdonck | |
Fast linear model trees by PILOT | |
A0376: S. Van Aelst, A.-A. Christidis, R. Zamar | |
Subset selection ensembles |
Session CO023 | Room: BCB 310 |
HiTEc session: Compositional, distributional and relative abundance data | Thursday 24.8.2023 16:15 - 17:45 |
Chair: Karel Hron | Organizer: Karel Hron |
A0210: P. Jaskova, K. Hron, J. Palarea-Albaladejo, M. Templ | |
Selection of relevant pairwise logratios for high-dimensional compositional data | |
A0213: V. Nesrstova, I. Wilms, K. Hron, P. Filzmoser | |
Identification of important pairwise logratios in compositional data employing sparse principal component analysis | |
A0180: B. Pestova, M. Pesta, M. Maciak | |
Unsupervised changepoint detection for panel data | |
A0293: S. Skorna, K. Hron, J. Machalova, J. Burkotova | |
Approximation of bivariate densities with compositional splines |
Session CC085 | Room: BCB 308 |
Computational statistics | Thursday 24.8.2023 16:15 - 17:45 |
Chair: Mark De Rooij | Organizer: COMPSTAT |
A0307: J. Guerin, P. Mozharovskyi | |
A polynomial-time algorithm for optimization-based depths | |
A0322: T. Ota, K. Okusa | |
Statistical estimation of heart movements by microwave Doppler radar sensor | |
A0324: D. Bodenham, Y. Kawahara | |
Efficient nonparametric two-sample testing with the maximum mean discrepancy | |
A0303: Q. Clairon, A. Leclercq-Samson | |
Optimal control for parameter estimation in partially observed hypoelliptic stochastic differential equations |
Parallel session M: COMPSTAT2023 | Friday 25.8.2023 | 09:00 - 10:00 |
Session CV035 | Room: Virtual room R01 |
Computational and financial econometrics | Friday 25.8.2023 09:00 - 10:00 |
Chair: Alessandra Luati | Organizer: COMPSTAT |
A0337: B. Kozyrev, O. Holtemoeller | |
Forecasting economic activity with a neural network in uncertain times: Application to German GDP | |
A0160: M.M. Pizarro, E.L. Sanjuan, M.I. Parra Arevalo | |
Informative priors to estimate the value-at-risk |
Session CO014 | Room: BCB 309 |
Recent clustering methods for complex data I | Friday 25.8.2023 09:00 - 10:00 |
Chair: Mika Sato-Ilic | Organizer: Mika Sato-Ilic |
A0219: S.-K.A. Ng, R. Tawiah, H. Nguyen, F. Forbes | |
Mixture of linear mixed models for clustering weighted random graphs | |
A0235: K. Tanioka, H. Yadohisa | |
Asymmetric cluster difference scaling based on hill-climbing model | |
A0236: M. Sato-Ilic | |
A fuzzy cluster-scaled principal component analysis for mixed high-dimension and low-sample size data |
Session CC045 | Room: BCB 307 |
Applied statistics and data analysis | Friday 25.8.2023 09:00 - 10:00 |
Chair: Luca Insolia | Organizer: COMPSTAT |
A0150: Y.-C.I. Chang | |
Federated learning via distributed sequential method | |
A0299: N. Hamed, S. Chan | |
Composite lognormal distributions of cosmic voids in simulation and mock data | |
A0411: J. Striaukas | |
Factor-augmented sparse MIDAS regression for nowcasting |
Session CC118 | Room: BCB 308 |
Quality control | Friday 25.8.2023 09:00 - 10:00 |
Chair: Steven Gilmour | Organizer: COMPSTAT |
Session CC070 | Room: BCB 310 |
HiTEc session: Text mining | Friday 25.8.2023 09:00 - 10:00 |
Chair: Maria Brigida Ferraro | Organizer: COMPSTAT |
A0281: P. Winker | |
Visualizing topic uncertainty in topic modelling | |
A0297: A. Staszewska-Bystrova, V. Bystrov, V. Naboka-Krell, P. Winker | |
Choosing the number of topics in LDA models: A Monte Carlo comparison of selection criteria | |
A0331: P. Baranowski, S. Wojcik | |
Textual content and academic journals selectiveness: A case of economic journals |
Session CC094 | Room: BCB 311 |
Longitudinal and functional data analysis | Friday 25.8.2023 09:00 - 10:00 |
Chair: Sonja Greven | Organizer: COMPSTAT |
A0220: K. Hayakawa, B. Yin | |
The mean group estimators for multi-level autoregressive models with intensive longitudinal data | |
A0355: A. Eletti, G. Marra, R. Radice | |
General estimation framework for multi-state Markov processes with flexible specification of the transition intensities | |
A0405: M. Ofner, S. Hoermann | |
Reconstructing partially observed functional data via factor models of increasing rank |
Parallel session N: COMPSTAT2023 | Friday 25.8.2023 | 10:30 - 12:00 |
Session CV031 | Room: BCB 308 |
Time series and dependence models | Friday 25.8.2023 10:30 - 12:00 |
Chair: Alessandra Luati | Organizer: COMPSTAT |
A0344: K.W. Chan, H.K. To | |
Mean stationarity test in time series: A signal variance-based approach | |
A0342: M.D.C. Robustillo Carmona, L. Naranjo Albarran, M.I. Parra Arevalo, C.J. Perez Sanchez | |
A vector error correction model to address sensor-based time series | |
A0371: M. Dolfin, J. De Leon Miranda | |
Exploring the impact of non-linear dependencies in stock market returns regime transitions | |
A0375: M. Borsch, A. Mayer, D. Wied | |
Consistent estimation of multiple breakpoints in dependence measures |
Session CI007 (Special Invited Session) | Room: BCB 310 |
HiTEc session: Recent advances in dimension reduction methods | Friday 25.8.2023 10:30 - 12:00 |
Chair: Sara Taskinen | Organizer: Sara Taskinen |
A0192: A. Artemiou, C. Antonis | |
An adaptive approach for sparse quantile regression | |
A0196: K. Nordhausen, A. Alfons, A. Archimbaud, A. Ruiz-Gazen | |
Tandem clustering with ICS | |
A0229: S. De Iaco | |
Spatio-temporal coregionalization modeling by using simultaneous diagonalization |
Session CO022 | Room: BCB 307 |
Statistics applied to industry | Friday 25.8.2023 10:30 - 12:00 |
Chair: Francisco Louzada | Organizer: Francisco Louzada |
A0338: F. Louzada | |
Reliability in Brazil: Roads for approaching industry | |
A0343: P. Ferreira, E. Brito, V. Tomazella, F. Louzada, O. Gonzatto-Junior | |
Statistical modeling and reliability analysis of repairable systems with dependent failure times under imperfect repair | |
A0276: D. Nascimento | |
Stats in Industry 5.0: Some cases of contemporaneous experimental designs adopting dynamic and hierarchical structures | |
A0407: P. Ramos | |
Statistical inference for generalized power-law process in repairable systems |
Session CO020 | Room: BCB 309 |
Recent clustering methods for complex data II | Friday 25.8.2023 10:30 - 12:00 |
Chair: Mika Sato-Ilic | Organizer: Mika Sato-Ilic |
A0249: M. Ohishi, H. Yanagihara | |
Clustering for category variables in linear regression via generalized fused Lasso | |
A0250: K. Kirishima, M. Ohishi, H. Yanagihara | |
Comparison of prediction methods for spatial data using real estate data | |
A0268: C. Marsala | |
Subclass discovery from fuzzy decision trees |
Session CO018 | Room: BCB 311 |
ML and FinTech | Friday 25.8.2023 10:30 - 12:00 |
Chair: Maria Grith | Organizer: Ying Chen, Maria Grith |
A0205: G. Finocchio, J. Schmidt-Hieber | |
Posterior contraction for deep Gaussian process priors | |
A0238: R. Miftachov, M. Grith, Z. Wang | |
On pricing kernels for digital assets | |
A0260: H.L.H. Lai, M. Grith, Y. Chen | |
Modeling nonlinear dynamics of functional time series for large-scale data | |
A0264: M. Grith | |
Spectral factors for functional data |
Session CO010 | Room: Virtual room R01 |
Recent advances in Bayesian econometrics | Friday 25.8.2023 10:30 - 12:00 |
Chair: TBA | Organizer: |
A0274: M. Takahashi | |
Analyzing intraday variation in price impact: A Bayesian SVAR approach with stochastic volatility estimation | |
A0277: J. Nakajima | |
Time-varying parameter local projections with stochastic volatility | |
A0279: T. Kano | |
Posterior inferences on incomplete structural models: The minimal econometric interpretation | |
A0278: J. Stroud, M. Johannes, N.J. Seeger | |
Time-varying macroeconomic announcement risk |