COMPSTAT 2022: Start Registration
View Submission - COMPSTAT2022
A0666
Title: Manifold structure in graph embeddings Authors:  Patrick Rubin-delanchy - University of Bristol (United Kingdom) [presenting]
Abstract: Statistical analysis of a graph often starts with embedding, the process of representing its nodes as points in space. How to choose the embedding dimension is a nuanced decision in practice, but in theory, a notion of true dimension is often available. In spectral embedding, this dimension may be very high. However, it is shown that existing random graph models, including graphon and other latent position models, predict the data should live near a much lower dimensional manifold. One may therefore circumvent the curse of dimensionality by employing methods which exploit hidden manifold structures. We illustrate results on toy as well as cyber-security network data.