B0234
Title: Modeling extremal streamflow using deep learning approximations and a flexible spatial process
Authors: Brian Reich - North Carolina State University (United States) [presenting]
Reetam Majumder - North Carolina State University (United States)
Benjamin Shaby - Colorado State University (United States)
Abstract: Quantifying changes in the probability and magnitude of extreme flooding events is key to mitigating their impacts. While hydrodynamic data are inherently spatially dependent, traditional spatial models such as Gaussian processes are poorly suited for modelling extreme events. Spatial extreme value models with more realistic tail dependence characteristics are under active development. They are theoretically justified, but give intractable likelihoods, making computation challenging for small datasets and prohibitive for continental-scale studies. A process mixture model is proposed which specifies spatial dependence in extreme values as a convex combination of a Gaussian process and a max-stable process, yielding desirable tail dependence properties but intractable likelihoods. To address this, a unique computational strategy is employed where a feed-forward neural network is embedded in a density regression model to approximate the conditional distribution at one spatial location given a set of neighbours. This univariate density function is then used to approximate the joint likelihood for all locations by way of a Vecchia approximation. The process mixture model is used to analyze changes in annual maximum streamflow within the US over the last 50 years and is able to detect areas which show increases in extreme streamflow over time.