B1300
Title: Augmented two-step estimating equations with nuisance functionals and complex survey data
Authors: Puying Zhao - Yunnan University (China) [presenting]
Changbao Wu - University of Waterloo (Canada)
Abstract: Statistical inference in the presence of nuisance functionals with complex survey data is an important topic in social and economic studies. The Gini index, Lorenz curves and quantile shares are among the commonly encountered examples. A plug-in nonparametric estimator usually handles the nuisance functionals and the main inferential procedure can be carried out through a two-step generalized empirical likelihood method. Unfortunately, the resulting inference is inefficient, and the nonparametric version of the Wilks theorem breaks down even under simple random sampling. An augmented estimating equations method is suggested with nuisance functionals and complex surveys. The second-step augmented estimating functions automatically handle the impact of the first-step plug-in estimator, and the resulting estimator of the main parameters of interest is invariant to the first-step method. More importantly, the generalized empirical likelihood-based Wilks theorem holds for the main parameters of interest under the design-based framework for commonly used survey designs, and the maximum generalized empirical likelihood estimators achieve the semiparametric efficiency bound. Performances of the proposed methods are demonstrated through simulation studies and an application using the dataset from the New York City Social Indicators Survey.