CMStatistics 2021: Start Registration
View Submission - CFE
A0448
Title: Dynamic shrinkage estimation of the high-dimensional minimum-variance portfolio Authors:  Erik Thorsen - Stockholm University (Sweden) [presenting]
Taras Bodnar - Stockholm University (Sweden)
Nestor Parolya - Leibniz University Hannover (Germany)
Abstract: New results in random matrix theory are derived which allow the construction of a shrinkage estimator of the global minimum variance (GMV) portfolio when the shrinkage target is a random object. More specifically, the shrinkage target is determined as the holding portfolio estimated from previous data. The theoretical findings are applied to develop theory for dynamic estimation of the GMV portfolio, where the new estimator of its weights is shrunk to the holding portfolio at each time of reconstruction. Both cases with and without overlapping samples are considered. The non-overlapping samples correspond to the case when different data of the asset returns are used to construct the traditional estimator of the GMV portfolio weights and to determine the target portfolio, while the overlapping case allows intersections between the samples. The theoretical results are derived under weak assumptions imposed on the data-generating process. No specific distribution is assumed for the asset returns except from the assumption of finite $4+\varepsilon$, $\varepsilon>0$, moments. Also, the population covariance matrix with unbounded spectrum can be considered. The performance of new trading strategies is investigated via an extensive simulation. Finally, the theoretical findings are implemented in an empirical illustration based on the returns on stocks included in the S\&P 500 index.