B0214
Title: Fast distance correlation chi-square test
Authors: Cencheng Shen - University of Delaware (United States) [presenting]
Abstract: Distance correlation has gained much recent attention in the data science community: the sample statistic is straightforward to compute and asymptotically equals zero if and only if there is independence, making it an ideal choice to discover any type of dependency structure given sufficient sample size. One major bottleneck is the testing process: because the null distribution of distance correlation depends on the underlying random variables and metric choice, it typically requires a permutation test to estimate the null and compute the p-value, which is very costly for a large amount of data. To overcome the difficulty, we propose a chi-square test for distance correlation. Method-wise, the chi-square test is non-parametric, extremely fast, and applicable to bias-corrected distance correlation using any strong negative type metric or characteristic kernel. The test exhibits a similar testing power as the standard permutation test, and can be utilized for K-sample and partial testing. Theory-wise, we show that the underlying chi-square distribution well approximates and dominates the limiting null distribution in the upper tail, prove the chi-square test can be valid and universally consistent for testing independence, and establish a testing power inequality with respect to the permutation test.