B1064
Title: Principal component analysis for network samples
Authors: James Wilson - University of Pittsburgh (United States) [presenting]
Abstract: The problem of interpretable network representation learning for samples of network-valued data is considered. We propose the Principal Component Analysis for Networks (PCAN) algorithm to identify statistically meaningful low-dimensional representations of a network sample via subgraph count statistics. The PCAN procedure provides an interpretable framework for which one can readily visualize, explore, and formulate predictive models for network samples. We furthermore introduce a fast sampling-based algorithm, sPCAN, which is significantly more computationally efficient than its counterpart, but still enjoys advantages of interpretability. We investigate the relationship between these two methods and analyze their large-sample properties under the common regime where the sample of networks is a collection of kernel-based random graphs. We show that under this regime, the embeddings of the sPCAN method enjoy a central limit theorem and moreover that the population level embeddings of PCAN and sPCAN are equivalent. We assess PCAN's ability to visualize, cluster, and classify observations in network samples arising in nature, including functional connectivity network samples and dynamic networks describing the political co-voting habits of the U.S. Senate. Our analyses reveal that our proposed algorithm provides informative and discriminatory features describing the networks in each sample.