CFE 2019: Start Registration
View Submission - CMStatistics
Title: De-biased graphical Lasso for high-frequency data Authors:  Yuta Koike - University of Tokyo (Japan) [presenting]
Abstract: A new statistical inference theory is developed for the precision matrix of high-frequency data in a high-dimensional setting. The focus is not only on point estimation, but also on interval estimation and hypothesis testing for entries of the precision matrix. To accomplish this purpose, we establish an abstract asymptotic theory for the weighted graphical Lasso and its de-biased version without specifying the form of the initial covariance estimator. We also extend the scope of the theory to the case that a known factor structure is present in the data. The developed theory is applied to the concrete situation where we can use the realized covariance matrix as the initial covariance estimator, and we obtain a feasible asymptotic distribution theory to construct (simultaneous) confidence intervals and (multiple) testing procedures for entries of the precision matrix.