CFE 2019: Start Registration
View Submission - CMStatistics
Title: Improving exoplanet detection power: Multivariate Gaussian process models for stellar activity Authors:  David Jones - Texas A&M University (United States) [presenting]
David Stenning - Imperial College London (United Kingdom)
Eric Ford - Penn State University (United States)
Robert Wolpert - Duke University (United States)
Tom Loredo - Cornell University (United States)
Xavier Dumusque - Branco Weiss Fellow--Society in Science (Switzerland)
Abstract: The radial velocity technique is one of the two main approaches for detecting planets outside our solar system, often referred to as exoplanets. When a planet orbits a star its gravitational force causes the star to move and this induces a Doppler shift (i.e. the star light appears redder or bluer than expected), and it is this effect that the radial velocity method attempts to detect. Unfortunately, these Doppler signals are typically contaminated by various stellar activity phenomena, such as dark spots on the star surface. We propose a Gaussian process modeling framework to capture this stellar activity and thereby improve detection power for low-mass planets (e.g., Earth-like planets). The approach builds on previous work in two ways: (i) we use dimension reduction techniques to construct data-driven stellar activity proxies, as opposed to using standard activity proxies; (ii) we extend a previous multivariate Gaussian process model to a class of models and use a model comparison procedure to select the best model for the particular proxies at hand. Our method results in substantially improved power for planet detection compared with existing methods in the astronomy literature.