CFE 2019: Start Registration
View Submission - CMStatistics
Title: Classification with imperfect training labels Authors:  Timothy Cannings - University of Edinburgh (United Kingdom) [presenting]
Yingying Fan - University of Southern California (United States)
Richard Samworth - University of Cambridge (United Kingdom)
Abstract: The effect of imperfect training data labels on the performance of classification methods is studied. In a general setting, where the probability that an observation in the training dataset is mislabelled may depend on both the feature vector and the true label, we bound the excess risk of an arbitrary classifier trained with imperfect labels in terms of its excess risk for predicting a noisy label. This reveals conditions under which a classifier trained with imperfect labels remains consistent for classifying uncorrupted test data points. Furthermore, under stronger conditions, we derive detailed asymptotic properties for the popular $k$-nearest neighbour ($k$nn), Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA) classifiers. One consequence of these results is that the $k$nn and SVM classifiers are robust to imperfect training labels, in the sense that the rate of convergence of the excess risks of these classifiers remains unchanged. On the other hand, the LDA classifier is shown to be typically inconsistent in the presence of label noise unless the prior probabilities of each class are equal.