CFE 2019: Start Registration
View Submission - CFE
Title: LASSO-Driven Inference in Time and Space Authors:  Chen Huang - Aarhus University (Denmark) [presenting]
Weining Wang - University of York (United Kingdom)
Victor Chernozhukov - MIT (United States)
Wolfgang Karl Haerdle - Humboldt University at Berlin (Germany)
Abstract: We consider the estimation and inference in a system of high-dimensional regression equations allowing for temporal and cross-sectional dependency in covariates and error processes, covering rather general forms of weak dependence. A sequence of regressions with many regressors using LASSO (Least Absolute Shrinkage and Selection Operator) is applied for variable selection purpose, and an overall penalty level is carefully chosen by a block multiplier bootstrap procedure to account for multiplicity of the equations and dependencies in the data. Correspondingly, oracle properties with a jointly selected tuning parameter are derived. We further provide high-quality de-biased simultaneous inference on the many target parameters of the system. We provide bootstrap consistency results of the test procedure, which are based on a general Bahadur representation for the $Z$-estimators with dependent data. Simulations demonstrate good performance of the proposed inference procedure. Finally, we apply the method to quantify spillover effects of textual sentiment indices in a financial market and to test the connectedness among sectors.