CFE 2019: Start Registration
View Submission - CFE
Title: A semi-parametric realized joint value-at-risk and expected shortfall regression framework Authors:  Chao Wang - The University of Sydney (Australia) [presenting]
Richard Gerlach - University of Sydney (Australia)
Abstract: A new realized joint Value-at-Risk (VaR) and expected shortfall (ES) regression framework is proposed, through incorporating a measurement equation into the original joint VaR and ES regression model. The measurement equation models the contemporaneous dependence between the realized measure (e.g. Realized Variance and Realized Range) and the latent conditional quantile. Further, sub-sampling and scaling methods are applied to both the realized range and realized variance, to help deal with inherent micro-structure noise and inefficiency. An adaptive Bayesian Markov Chain Monte Carlo method is employed for estimation and forecasting, whose properties are assessed and compared with maximum likelihood estimator through simulation study. In a forecasting study, the proposed models are applied to 7 market indices and 2 individual assets, compared to a range of parametric, non-parametric and semi-parametric models, including GARCH, Realized-GARCH, conditional autoregressive Expectile, and joint VaR and ES quantile regression models, one-day-ahead Value-at-Risk and Expected Shortfall forecasting results favor the proposed models, especially when incorporating the sub-sampled Realized Variance and the sub-sampled Realized Range in the model.