CFE 2019: Start Registration
View Submission - CMStatistics
Title: Maximum mean discrepancy gradient flow Authors:  Anna Korba - Gatsby Unit UCL (United Kingdom) [presenting]
Abstract: A Wasserstein gradient flow of the maximum mean discrepancy (mmd) is constructed, and its convergence properties are studied. The MMD is an integral probability metric defined for a reproducing kernel Hilbert space (rkhs), and serves as a metric on probability measures for a sufficiently rich RKHS. We obtain conditions for convergence of the gradient flow towards a global optimum, that can be related to particle transport when optimizing neural networks. We also propose a way to regularize this MMD flow, based on an injection of noise in the gradient. This algorithmic fix comes with theoretical and empirical evidence. The practical implementation of the flow is straightforward, since both the MMD and its gradient have simple closed-form expressions, which can be easily estimated with samples.