CFE 2017: Start Registration
View Submission - CMStatistics
B0154
Title: A novel method for panel models with jump discontinuities Authors:  Alois Kneip - University of Bonn (Germany) [presenting]
Abstract: While a substantial literature on structural break change point analysis exists for univariate time series, research on large panel data models has not been as extensive. A novel method for estimating panel models with multiple structural changes is proposed. The breaks are allowed to occur at unknown points in time and may affect the multivariate slope parameters individually. Our method is related to the Haar wavelet technique; we adjust it according to the structure of the observed variables in order to detect the change points of the parameters consistently. We also develop methods to address endogeneous regressors within our modeling framework. The asymptotic property of our estimator is established. In our application, we examine the impact of algorithmic trading on standard measures of market quality such as liquidity and volatility over a time period that covers the financial meltdown that began in 2007. We are able to detect jumps in regression slope parameters automatically without using ad-hoc subsample selection criteria.