
Parallelisation of R with h2o
Lab III: Regularisation example via movie_reviews

Dr. Simon Caton

Introduction

h2o supports a large number of Generalised Linear Models. In fact, too many to cover here. See here for
an extensive overview with examples https://h2o-release.s3.amazonaws.com/h2o/rel-slater/9/docs-website/
h2o-docs/booklets/GLM_Vignette.pdf.

If you need a refresh of (or introduction to) regularisation, I would suggest viewing the following YouTube
video lectures from the ISLR book: https://www.youtube.com/playlist?list=PL5-da3qGB5IB-Xdpj_
uXJpLGiRfv9UVXI

Basic Built-in Example

The link above provides a much more expansive explanation of the following (simple) example (pages 11-12),
but the basic call for a logistic regression in h2o is as follows:
library(h2o)

##
--
##
Your next step is to start H2O:
> h2o.init()
##
For H2O package documentation, ask for help:
> ??h2o
##
After starting H2O, you can use the Web UI at http://localhost:54321
For more information visit http://docs.h2o.ai
##
--

##
Attaching package: 'h2o'

The following objects are masked from 'package:stats':
##
cor, sd, var

The following objects are masked from 'package:base':
##
&&, %*%, %in%, ||, apply, as.factor, as.numeric, colnames,
colnames<-, ifelse, is.character, is.factor, is.numeric, log,
log10, log1p, log2, round, signif, trunc
h2o.init()
path = system.file("extdata", "prostate.csv", package = "h2o")
h2o_df = h2o.importFile(path)
h2o_df$CAPSULE = as.factor(h2o_df$CAPSULE)

1

https://h2o-release.s3.amazonaws.com/h2o/rel-slater/9/docs-website/h2o-docs/booklets/GLM_Vignette.pdf
https://h2o-release.s3.amazonaws.com/h2o/rel-slater/9/docs-website/h2o-docs/booklets/GLM_Vignette.pdf
https://www.youtube.com/playlist?list=PL5-da3qGB5IB-Xdpj_uXJpLGiRfv9UVXI
https://www.youtube.com/playlist?list=PL5-da3qGB5IB-Xdpj_uXJpLGiRfv9UVXI

binomial.fit = h2o.glm(y = "CAPSULE",
x = c("AGE", "RACE", "PSA", "GLEASON"),
training_frame = h2o_df, family = "binomial")

h2o.performance(binomial.fit)

H2OBinomialMetrics: glm
** Reported on training data. **
##
MSE: 0.1786802
RMSE: 0.4227058
LogLoss: 0.5289
Mean Per-Class Error: 0.2598975
AUC: 0.7927644
Gini: 0.5855288
R^2: 0.2571069
Residual Deviance: 401.964
AIC: 411.964
##
Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
0 1 Error Rate
0 155 72 0.317181 =72/227
1 31 122 0.202614 =31/153
Totals 186 194 0.271053 =103/380
##
Maximum Metrics: Maximum metrics at their respective thresholds
metric threshold value idx
1 max f1 0.298968 0.703170 191
2 max f2 0.205231 0.803080 294
3 max f0point5 0.531385 0.687606 108
4 max accuracy 0.531385 0.736842 108
5 max precision 0.997166 1.000000 0
6 max recall 0.087936 1.000000 359
7 max specificity 0.997166 1.000000 0
8 max absolute_mcc 0.298968 0.471116 191
9 max min_per_class_accuracy 0.408870 0.713656 172
10 max mean_per_class_accuracy 0.298968 0.740103 191
##
Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`

To undertake classification (it’s a categorical dependent variable), we would follow the same approach as we
did for the MNIST dataset:

• create a training, and testing sample
• build the model as above
• use h2o.performance() and/or h2o.predict()

However, in the presence of a large number of predictors, or when the data set is wide, we want to avoid
over-fitting, reduce variance of the prediction error and handle correlated predictors. Similarly,it is also
advantageous to reduce the number of components our model has to aid its generalisability and interpretability.
Regularisation through the introduction of penalties assists in both these respects. The two most common
penalized models are ridge regression and the lasso, with the elastic net combining both penalties. For
large (wide) datasets, finding a good selection of variables for a number of tuning parameters can be quite
computationally expensive, although both the ridge regression and lasso do a fair bit to reduce computational
time vs. for example a best subset selection.

2

Typically in R, we would use the glmnet function for this, which is reasonably fast. Yet, h2o also provides
the ability as we saw to optimise over the tuning parameters too.

To regularise the sample model above via an elastic net, we would do the following:
#random sample via h2o's sample method
split <- h2o.splitFrame(h2o_df, ratios = .75)
training <- split[[1]]
testing <- split[[2]]

binomial.fit.regularised <- h2o.glm(y = "CAPSULE",
x = c("AGE", "RACE", "PSA", "GLEASON"),
family = "binomial",
training_frame = training,
alpha = 0.5,
lambda_search = TRUE,
nfolds = 5)

h2o.performance(binomial.fit.regularised, newdata=testing)

H2OBinomialMetrics: glm
##
MSE: 0.1821809
RMSE: 0.4268265
LogLoss: 0.5376573
Mean Per-Class Error: 0.2410628
AUC: 0.815942
Gini: 0.6318841
R^2: 0.2711884
Residual Deviance: 97.85362
AIC: 107.8536
##
Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
0 1 Error Rate
0 32 14 0.304348 =14/46
1 8 37 0.177778 =8/45
Totals 40 51 0.241758 =22/91
##
Maximum Metrics: Maximum metrics at their respective thresholds
metric threshold value idx
1 max f1 0.291601 0.770833 50
2 max f2 0.220185 0.869565 72
3 max f0point5 0.493786 0.751445 31
4 max accuracy 0.291601 0.758242 50
5 max precision 0.962430 1.000000 0
6 max recall 0.119707 1.000000 84
7 max specificity 0.962430 1.000000 0
8 max absolute_mcc 0.291601 0.521668 50
9 max min_per_class_accuracy 0.408881 0.739130 45
10 max mean_per_class_accuracy 0.291601 0.758937 50
##
Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`

Note the additional parameters:

• alpha: controls the elastic net penalty distribution between the l1 and l2 norms. It can have any value
in the [0, 1] range or a vector of values (which triggers grid search). If α = 0, h2o solves the GLM

3

with ridge regression, while if α = 1 it does so with the lasso penalty. Defaults at 0.5 (hence the same
outcome as above).

• lambda_search: h2o will seek to optimise λ (the regularisation strength). The λ range is any positive
value or a vector of values (which triggers grid search). Note: Lambda values are capped at λmax, which
is the smallest λ for which the solution is all zeros (except for the intercept term). Defaults to FALSE.

• nfolds: number of folds for K-fold cross-validation. Defaults to 0.

We can also leverage a grid search for parameters like α similar to how we did for the random forest.

Undertaking the same with glmnet would be as follows:
library(glmnet)

Loading required package: Matrix

Loading required package: foreach

Loaded glmnet 2.0-13
library(caret)

Loading required package: lattice

Loading required package: ggplot2
df <- read.csv(file = system.file("extdata", "prostate.csv", package = "h2o"))
df$CAPSULE <- as.factor(df$CAPSULE)
index <- sample(1:nrow(df), nrow(df)*.75, replace = F)
training <- df[index,]
testing <- df[-index,]

t1 <- Sys.time()
fit <- cv.glmnet(x = as.matrix(training[,c("AGE", "RACE", "PSA", "GLEASON")]),

y = training$CAPSULE,
family = 'binomial',
alpha = 0.5,
nfolds=5)

print(difftime(Sys.time(), t1, units = 'sec'))

Time difference of 0.2039092 secs
pred <- predict(fit, newx=as.matrix(testing[,c("AGE", "RACE", "PSA", "GLEASON")]),

type = 'response')[, 1]

#pick a confidence threshold, e.g. 0.5 (we can optimise this easily enough though)
pred <- ifelse(pred>0.5, 1, 0)

confusionMatrix(pred, testing$CAPSULE)

Confusion Matrix and Statistics
##
Reference
Prediction 0 1
0 50 27
1 4 14
##
Accuracy : 0.6737
95% CI : (0.5698, 0.7664)
No Information Rate : 0.5684

4

P-Value [Acc > NIR] : 0.02345
##
Kappa : 0.2868
Mcnemar's Test P-Value : 7.772e-05
##
Sensitivity : 0.9259
Specificity : 0.3415
Pos Pred Value : 0.6494
Neg Pred Value : 0.7778
Prevalence : 0.5684
Detection Rate : 0.5263
Detection Prevalence : 0.8105
Balanced Accuracy : 0.6337
##
'Positive' Class : 0
##

At this point, we would still need to determine at least the value of α, and our confidence threshold (the latter
is probably slightly more challenging methodologically, but from a programming perspective can essentially
be undertaken with a for loop). Before we concern ourselbves with this, we could also use built-in parallelism
for this method as follows:
library(doMC)
registerDoMC(detectCores())
t2 <- Sys.time()
fit <- cv.glmnet(x = as.matrix(training[,c("AGE", "RACE", "PSA", "GLEASON")]),

y = training$CAPSULE,
family = 'binomial',
alpha = 0.5,
nfolds = 5,
parallel = TRUE)

print(difftime(Sys.time(), t2, units = 'sec'))

Time difference of 0.2675769 secs

However, for a dataset of this size, this is somewhat overengineering the problem! The overhead of using
multiple cores and synchronising across them is larger (evidentally) than not parallelising in the first place!
However, as we will see in the example below, if runtime is important, the above code will outperform h2o.

Analysing Movie Reviews

So let’s articulate the type of classification problem we have here: a dichotomous dependent variable “good”
and “not good” movie review, our independent variable (as it currently stands) in this case is our review text.
Obviously, we cannot use this as is, some preprocessing is required.

Let’s start just by sampling the data:
library(text2vec)
data("movie_review")

set.seed(2018)
trainIndex <- createDataPartition(movie_review$sentiment, p = 0.8,

list = FALSE,
times = 1)

5

movie_train <- movie_review[trainIndex,]
movie_test <- movie_review[-trainIndex,]

Next, we need to tokenize the text; essentially find all of the individual words in the text. Doing this means
we have a list of words. We can then process each word in our list:

• Convert them to lower case, thus Cat and cat become the same word.
• We can (but aren’t here) stem the words, i.e. cut the end of the word off. For example, competing (and

compete), would become compet this removes common suffixes reducing variation in the list of words.
• We can also (but aren’t here) remove stop words like the, he, she, it. These words are extremely

common and thus it is not likely they really add to our model.
• We can also (but aren’t here) remove punctuation and special characters (e.g. emoji). Otherwise “win,”

and “win” would be considered as different words.

The last 3 forms of preprocessing are excluded here, just to simplify the code.
prep_fun = tolower
tok_fun = word_tokenizer

it_train = itoken(movie_train[['review']],
preprocessor = prep_fun,
tokenizer = tok_fun,
ids = movie_train[['ids']],
progressbar = FALSE)

it_test = itoken(movie_test[['review']],
preprocessor = prep_fun,
tokenizer = tok_fun,
ids = movie_test[['ids']],
progressbar = FALSE)

Next, we build a vocabulary (a list of all unique words across all reviews):
vocab <- create_vocabulary(it_train)

Each word will later become one possible component in our model – it gets big very quickly!

Finally, tokenize the corpus of reviews and build a sparse matrix (called a document term matrix) in each
column is the frequency of word occurences, for each review (one per row). From here, we’ll be able to model
reviews according to word frequencies.
vectorizer <- vocab_vectorizer(vocab)

dtm_train <- create_dtm(it_train, vectorizer)
dtm_test <- create_dtm(it_test, vectorizer)

These matrices are quite big, and very sparse! We have predictors! Many of which will not be useful at all.
dim(dtm_train)

[1] 4000 38320

Using the glmnet package, we can build a logistic regression, and regularise (in parallel) as follows. Here we
are also optimising based on the area under the ROC curve:
t1 <- Sys.time()
fit <- cv.glmnet(x = dtm_train, y = movie_train[['sentiment']],

family = 'binomial',
lasso + ridge

6

alpha = 0.5,
interested area unded ROC curve
type.measure = "auc",
5-fold cross-validation
nfolds = 5,
parallel = TRUE)

print(difftime(Sys.time(), t1, units = 'sec'))

Time difference of 3.946934 secs
pred <- predict(fit, dtm_test, type = 'response')[, 1]

glmnet:::auc(movie_test[['sentiment']], pred)

[1] 0.9292578

Whilst this performance is ok, we can do a lot better. Note also, that by using the glmnet implementation of
auc we can remove the need to determine a confidence threshold for predicting our dependent variable, which
for the purposes of this session is convenient.

To do the same with h2o, we have to handle a little challenge: h2o is not very good at receiving sparse
matrices. For a dataset like this, it won’t be too bad, but if we increase the number of reviews significantly,
as.h2o() will be really slow! Even with packages like data.table and slam installed, which help it deal with
sparse matrices.

For this, we can use the SVMLight representation of a sparse matrix:
library(sparsio)
write_svmlight(dtm_train, y = movie_train[['sentiment']], file="train.svmlight")
write_svmlight(dtm_test, y = movie_test[['sentiment']], file="test.svmlight")

This creates a better representation of the sparse matrix represented as follows:

1 4662:1 8096:1 9698:1 10827:1 . . .

Where 1 reflects the value of the dependent variable (positive), then only non-zero columns are represented.
We can import this kind of data much faster into h2o, than we could using as.h2o()
h2o_training <- h2o.importFile(path=paste0(getwd(), "/train.svmlight"))
h2o_testing <- h2o.importFile(path=paste0(getwd(), "/test.svmlight"))

Note that the names of the columns have changed. They have been renamed C1, . . . CN this information
was lost in the conversion to the SVMLight format. However, C1 is our dependent variable. We could also fix
this easily enough if it bothered us significantly via the names function.
y <- "C1"

t2 <- Sys.time()
glm_fit1 <- h2o.glm(y = y,

family = "binomial",
training_frame = h2o_training,
alpha = 0.5,
lambda_search = TRUE,
nfolds = 5)

print(difftime(Sys.time(), t2, units = 'sec'))

Time difference of 512.3626 secs

7

h2o.performance(glm_fit1, xval = TRUE, newdata = h2o_testing)

H2OBinomialMetrics: glm
##
MSE: 0.1073666
RMSE: 0.3276685
LogLoss: 0.3484456
Mean Per-Class Error: 0.1377558
AUC: 0.9259813
Gini: 0.8519627
R^2: 0.5704716
Residual Deviance: 696.8913
AIC: 4816.891
##
Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
0 1 Error Rate
0 426 80 0.158103 =80/506
1 58 436 0.117409 =58/494
Totals 484 516 0.138000 =138/1000
##
Maximum Metrics: Maximum metrics at their respective thresholds
metric threshold value idx
1 max f1 0.527801 0.863366 203
2 max f2 0.198314 0.904636 298
3 max f0point5 0.638770 0.868626 169
4 max accuracy 0.560958 0.862000 194
5 max precision 0.999936 1.000000 0
6 max recall 0.006483 1.000000 391
7 max specificity 0.999936 1.000000 0
8 max absolute_mcc 0.527801 0.724807 203
9 max min_per_class_accuracy 0.564265 0.859684 193
10 max mean_per_class_accuracy 0.527801 0.862244 203
##
Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`

In this case, although we can marginally improve an AU, the compute time here probably wasn’t worth it.
We’d actually be better off this time (sorry!!) working a little harder by hand, and using the parallelisation
backend of cv.glmnet to tune the regularisation parameters. However, if you are/were happy to wait.

The silver lining here I suppose is that we could use a grid search for the α parameter. We assumed that an
elastic net would be the best option here, which it may not be.

For cv.glmnet this is quite straight forward, especially once we have established a local cluster for the
implementation:
alpha <- seq(0,10)/10
auc <- c()
models <- c()

t3 <- Sys.time()
for (i in 1:length(alpha)) {

fit <- cv.glmnet(x = dtm_train, y = movie_train[['sentiment']],
family = 'binomial',
lasso + ridge
alpha = alpha[i],
interested area unded ROC curve

8

type.measure = "auc",
5-fold cross-validation
nfolds = 5,
parallel = TRUE)

pred <- predict(fit, dtm_test, type = 'response')[, 1]
auc[i] <- glmnet:::auc(movie_test[['sentiment']], pred)
this is optional (we're not going to use the model again)
models[i] <- fit

}
print(difftime(Sys.time(), t3, units = 'sec'))

Time difference of 40.23531 secs

Which in comparison to the approx. 11 mins it took to do just one optimisation for α with h2o is a quite a
difference. For reference, our best model now has an AUC of:
max(auc)

[1] 0.9379471

using α:
alpha[which(auc == max(auc))]

[1] 0.1

Summary

So to summarise, as this may seem like it was a waste of time exploring h2o in this context. Yet, there are a
couple of important points to consider:

Performance: h2o can out perform cv.glmnet in the case where α was set to 0.5 (change the seed and redo
the sample, and you may find one of these example, but inevitably many of these examples will be crowded
out by computational time needed) – it may eventually outperform glmnet if we instrumented the grid search
to optimise α. However, the improvment may be marginal.

Computational time: the idea of computational time is different for different users. A pragmoatic user, may
only consider wall clock time (i.e. the time from start to finish as experienced by the user), by building
a sufficiently large cluster (i.e. combining multiple cloud VMs into 1 h2o cluster), the wall clock time (as
measured through this lab) can potentially be reduced to be more competitive with cv.glmnet (via the doMC
library). The flip side here is CPU time (i.e., the sum of all time spent across all cores computing the solution),
which obviously in the case of h2o will be far higher than for cv.glmnet. However, when we consider other
scenarios, such as the random forest or PCA in the previous lab, here we see something more benficial.

Trade off : it will be up to you whenever you use parallel implementations like h2o to decide for yourself
where its benefits are. It’s important that sessions like this one do not gloryify such libraries, as they may
not always be “better” depending on your notion(s) of quality. For example, based on the observations of
this session, you’d probably tend to do PCA with h2o, and an elastic net with cv.glmnet (+ doMC).

Be pragmatic: you do also need to factor in development time (i.e. coding time) into you notions of performance.
This, often overlooked, component of “performance” can sway your perspectives a little, but it’s highly
subjective and individualised.

9

Exercise

To close, and for adding a little light on the closing discussion obove. Take the opening example of the
prostate dataset, and compare and constrast h2o vs. a parallelised (or not) cv.glmnet with a (pseudo) grid
search for α trying to create for yourself your own answer(s) to the four points above.

10

	Introduction
	Basic Built-in Example

	Analysing Movie Reviews
	Summary
	Exercise

