
Parallelisation of R with h2o
Lab I: Introduction
Dr. Simon Caton

Introduction

The idea of this first session is to get used to some of the basic h2o functions, and start with a simple example:
a parallel PCA.

Setting up h2o

To initialise h2o, you need at least 2 things:

1. the Java Development Kit, accessible here: http://www.oracle.com/technetwork/java/javase/downloads/
jdk8-downloads-2133151.html. If you can open a terminal, type “java” and not get an error, you are
good.

2. you need to run the following code:
The following two commands remove any previously installed H2O packages for R.
if ("package:h2o" %in% search()) { detach("package:h2o", unload=TRUE) }
if ("h2o" %in% rownames(installed.packages())) { remove.packages("h2o") }

Next, we download packages that H2O depends on.
pkgs <- c("RCurl","jsonlite")
for (pkg in pkgs) {

if (! (pkg %in% rownames(installed.packages()))) { install.packages(pkg) }
}

Now we download, install and initialize the H2O package for R.
install.packages("h2o", type="source",

repos="http://h2o-release.s3.amazonaws.com/h2o/rel-wolpert/4/R")

Also available here: http://h2o-release.s3.amazonaws.com/h2o/rel-wolpert/4/index.html – in the INSTALL
IN R tab.

This is about a 300MB install, so may take some time.

Datasets

Throughout this session, we’ll be using the following datasets:

• the MNIST dataset: handwritten digit recognition – this dataset is large enough to cause problems, but
not too large that it will break your machine. It also has a well-established history in applications for
both statistical as well as machine learning.

• the Movie Reviews dataset: classifying the nature of a review from its review text – this dataset
although small (5000 reviews) is still large enough to require a reasonable amount of compute time for
simple optimisations. Also, as text data, it highlights some of the challenges in using sparse matrices
with h2o and their solutions.

1

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://h2o-release.s3.amazonaws.com/h2o/rel-wolpert/4/index.html

MNIST: an introduction

The dataset is accessible from here: https://www.kaggle.com/c/digit-recognizer/data
mnist <- read.csv("MNISTTrain.csv", header=T)
mnist$label <- factor(mnist$label)
table(mnist$label)

##
0 1 2 3 4 5 6 7 8 9
4132 4684 4177 4351 4072 3795 4137 4401 4063 4188

So we have 785 features, corresponding to:

• 1 dependent (called label): a value between 0 and 9.
• 784 grayscale pixel values corresponding to a 28 x 28 image.

Where example images are as follows:

2

8

9

9

8

8

0

4

9

9

3

2

4

5

2

6

8

3

2

4

9

0

9

2

2

0

4

9

1

7

6

3

8

1

5

2

3

6

2

2

5

4

1

9

6

4

5

6

8

The code to produce the above figure is available here: https://www.kaggle.com/jameshirschorn/
example-handwritten-digits.

So, it goes without saying that this is a dataset of significant size, both in terms of width (size of feature
space), and size (no. of instances). Building a model on the full dataset will be computationally expensive.
However, some preprocessing is available – we can remove pixels that are always black:
columsKeep <- names(which(colSums(mnist[, -1]) > 0))
mnist <- mnist[c("label", columsKeep)]

2

https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/jameshirschorn/example-handwritten-digits
https://www.kaggle.com/jameshirschorn/example-handwritten-digits

Movie Reviews: an introduction

This is a built-in dataset within the text2vec library:
library(text2vec)
data("movie_review")
summary(movie_review)

id sentiment review
Length:5000 Min. :0.0000 Length:5000
Class :character 1st Qu.:0.0000 Class :character
Mode :character Median :1.0000 Mode :character
Mean :0.5034
3rd Qu.:1.0000
Max. :1.0000
prop.table(table(movie_review$sentiment))

##
0 1
0.4966 0.5034
movie_review$sentiment <- factor(movie_review$sentiment)

It is a labeled dataset consisting of 5000 IMDB movie reviews, specially selected for sentiment analysis. The
sentiment of the reviews is binary, meaning an IMDB rating < 5 results in a sentiment score of 0, and a
rating >=7 has a sentiment score of 1. No individual movie has more than 30 reviews.

An example review:
movie_review$review[1]

[1] “With all this stuff going down at the moment with MJ i’ve started listening to his music, watching the
odd documentary here and there, watched The Wiz and watched Moonwalker again. Maybe i just want to
get a certain insight into this guy who i thought was really cool in the eighties just to maybe make up my
mind whether he is guilty or innocent. Moonwalker is part biography, part feature film which i remember
going to see at the cinema when it was originally released. Some of it has subtle messages about MJ’s feeling
towards the press and also the obvious message of drugs are bad m’kay.Visually impressive but of course this
is all about Michael Jackson so unless you remotely like MJ in anyway then you are going to hate this and
find it boring. Some may call MJ an egotist for consenting to the making of this movie BUT MJ and most of
his fans would say that he made it for the fans which if true is really nice of him.The actual feature film bit
when it finally starts is only on for 20 minutes or so excluding the Smooth Criminal sequence and Joe Pesci
is convincing as a psychopathic all powerful drug lord. Why he wants MJ dead so bad is beyond me. Because
MJ overheard his plans? Nah, Joe Pesci’s character ranted that he wanted people to know it is he who is
supplying drugs etc so i dunno, maybe he just hates MJ’s music.Lots of cool things in this like MJ turning
into a car and a robot and the whole Speed Demon sequence. Also, the director must have had the patience
of a saint when it came to filming the kiddy Bad sequence as usually directors hate working with one kid let
alone a whole bunch of them performing a complex dance scene.Bottom line, this movie is for people who like
MJ on one level or another (which i think is most people). If not, then stay away. It does try and give off a
wholesome message and ironically MJ’s bestest buddy in this movie is a girl! Michael Jackson is truly one of
the most talented people ever to grace this planet but is he guilty? Well, with all the attention i’ve gave this
subject. . . .hmmm well i don’t know because people can be different behind closed doors, i know this for a fact.
He is either an extremely nice but stupid guy or one of the most sickest liars. I hope he is not the latter.”

A dataset like this serves an interesting purpose, h2o will not always run faster than a standard R implemen-
tation (e.g. a logistic regression + elasticnet regularisation via glmnet), but its optimisation routines will
outperform a novice user quite easily, which we will explore in sesson III.

3

Getting started with h2o

Once installed, we start a local h2o cluster as follows:
library(h2o)

##
--
##
Your next step is to start H2O:
> h2o.init()
##
For H2O package documentation, ask for help:
> ??h2o
##
After starting H2O, you can use the Web UI at http://localhost:54321
For more information visit http://docs.h2o.ai
##
--

##
Attaching package: 'h2o'

The following objects are masked from 'package:stats':
##
cor, sd, var

The following objects are masked from 'package:base':
##
&&, %*%, %in%, ||, apply, as.factor, as.numeric, colnames,
colnames<-, ifelse, is.character, is.factor, is.numeric, log,
log10, log1p, log2, round, signif, trunc
h2o.init()

Connection successful!
##
R is connected to the H2O cluster:
H2O cluster uptime: 3 hours 35 minutes
H2O cluster timezone: Europe/Dublin
H2O data parsing timezone: UTC
H2O cluster version: 3.18.0.4
H2O cluster version age: 24 days
H2O cluster name: H2O_started_from_R_scaton_kpi460
H2O cluster total nodes: 1
H2O cluster total memory: 1.63 GB
H2O cluster total cores: 4
H2O cluster allowed cores: 4
H2O cluster healthy: TRUE
H2O Connection ip: localhost
H2O Connection port: 54321
H2O Connection proxy: NA
H2O Internal Security: FALSE
H2O API Extensions: XGBoost, Algos, AutoML, Core V3, Core V4
R Version: R version 3.4.3 (2017-11-30)

This provides us with a series of information on our cluster. As this is a local cluster, i.e. it’s running on your

4

machine, it automatically adopts the specification of you machine. Here, for me, I have x1 (i.e. H2O cluster
total nodes: 1) quad core machine (i.e. H2O cluster total cores: 4). We can also access h2o Flow (a UI) by
opening http://localhost:54321 in a browser – we’ll come to this later.

h2o will run until showdown, for this, you run:
h2o.shutdown()

h2o handles almost all objects in R via S4 object representations. If you are unfamiliar with S4, see here:
http://adv-r.had.co.nz/S4.html.

h2o is still being developed, but has already implemented a lot of methods. A basic R tutorial covering things
that we will not cover directly here is available here: http://h2o-release.s3.amazonaws.com/h2o/master/1713/
docs-website/Ruser/rtutorial.html. A quick overview of (parallelised) methods available to date are:

• Data import
• Standard R functions like: summary, str, quantile, =,>,<,|,[], etc.
• Gradient Boosted Models – very useful for building model Ensembles, and typically do well with a large

number of problems
• Generalized Linear Models, including parallelised regularisation and parameter optimisation
• K-Means clustering
• Principal Components Analysis
• Principal Components Regression
• Deep Learning (one of h2o’s primary use cases)
• Naive Bayes
• Random Forest

Note that depending on what you are trying to achieve, h2o will not always be “faster” than standard R, it
will also be more demanding of battery life on a laptop.

Simple Example: Parallel PCA

To get started, let’s look at some very simple examples of h2o; the MNIST dataset is an ideal candidate for
PCA.

Standard R:
t1 <- Sys.time()
pca <- prcomp(mnist[, -1], scale. = F, center = F)
print(difftime(Sys.time(), t1, units = 'sec'))

Time difference of 68.55391 secs

We don’t need to scale the data; all variables are in the same range 0-255. Centering the data also will not
really make a big difference in this case, the first PC will be “better” if we don’t center the data.

h2o:
h2o.mnist <- h2o.importFile(path=paste0(getwd(), "/MNISTTrain.csv"), header=T)
h2o.mnist <- h2o.mnist[c("label", columsKeep)]
t2 <- Sys.time()
pca.h2o <- h2o.prcomp(h2o.mnist[, -1], k=100)

print(difftime(Sys.time(), t2, units = 'sec'))

Time difference of 11.72307 secs

For h2o, we first have to import the dataset into an h2o frame. We could also do this via as.h2o(mnist),
however, h2o.importFile() is usually faster. The parameter k essentially just instructs h2o how many PCs to

5

http://localhost:54321
http://adv-r.had.co.nz/S4.html
http://h2o-release.s3.amazonaws.com/h2o/master/1713/docs-website/Ruser/rtutorial.html
http://h2o-release.s3.amazonaws.com/h2o/master/1713/docs-website/Ruser/rtutorial.html

compute. Given that we have 700 odd variables, 100 is probably sufficient, and in fact probably already more
than needed.

Given that PCA is a fairly standard method, that native R took about 6 times longer to run, is noticable for
a dataset of this size. Of course, if you are using a much smaller dataset, then you may not really notice the
difference in runtime.

Building the standard scree plot or cumulative importance plots, also are not significantly different to do, we
just need to keep in mind that h2o uses an S4 representation, which requires a little more massaging if you
are not used to it.

Standard R:
screeplot(pca, type="lines", npcs = 100)

pca

V
ar

ia
nc

es

0
50

00
00

15
00

00
0

25
00

00
0

1 6 12 19 26 33 40 47 54 61 68 75 82 89 96
var.pca <- pca$sdev ^ 2
x.var.pca <- var.pca / sum(var.pca)
cum.var.pca <- cumsum(x.var.pca)

plot(cum.var.pca[1:100],xlab="No. of principal components",
ylab="Cumulative Proportion of variance explained", ylim=c(0,1), type='b')

6

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

No. of principal components

C
um

ul
at

iv
e

P
ro

po
rt

io
n

of
 v

ar
ia

nc
e

ex
pl

ai
ne

d

h2o:
plot(x=t(pca.h2o@model$importance[1,]), xlab="Principal Component",

ylab="Proportion of variance explained")

0 20 40 60 80 100

0
50

0
10

00
15

00

Principal Component

P
ro

po
rt

io
n

of
 v

ar
ia

nc
e

ex
pl

ai
ne

d

plot(x=t(pca.h2o@model$importance[3,]), xlab="No. of principal components",
ylab="Cumulative Proportion of variance explained", ylim=c(0,1), type='b')

7

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

No. of principal components

C
um

ul
at

iv
e

P
ro

po
rt

io
n

of
 v

ar
ia

nc
e

ex
pl

ai
ne

d

pca.h2o@model$importance returns us a data.frame, which for plotting we need to subset and transpose.
Note that the out of the box screeplot function will not work here, as it expects an object containing a sdev
component, such as that returned by princomp() and prcomp(), engineering this is possible, but unnecessary.

Similarly, if we wanted to get the loadings for each PC, e.g. apply the first 35 PCs to the dataset:

Standard R:
mnist.pca <- as.matrix(mnist[,-1]) %*% pca$rotation[, 1:35]

Using h2o’s PCA:
mnist.h2o.pca <- as.matrix(mnist[,-1]) %*%

as.matrix(pca.h2o@model$eigenvectors[, 1:35])

We could cast the h2o frame h2o.mnist to a matrix, but this will give us the same result, and in this case,
will take slightly longer to compute. However, if we were to use mnist.h2o.pca with h2o, we would have to
cast it back to an h2o frame using as.h2o().

Using Cloud resources

Obviously, the example used here hasn’t been very demanding on your machine. This can change quite
quickly, however, as we’ll see in Session II, we can handle this by building an h2o cluster using Cloud resources,
i.e. one or more virtual machines, and:

1. leverage h2o via RServer and a browser.
2. add additional parameters to h2o.init() to “point” at our Cloud VM.

Also note, that if you are on the move (e.g. hotspotting your phone), or in a location with poor internet,
option 1 (with or without h2o) is a really useful way of coping with a low-bandwith connection. For option 1
all data transfers happen on the cloud infrastructure, for option 2 most large transfers happen on the cloud
infrastructure, unless you pull data to your machine.

8

mailto:pca.h2o@model

Note that we can also build multi-node h2o clusters, i.e. where we use more than one (virtual) machine. For
this, we just need to start up h2o slightly differently, and point the different nodes at each other. See here:
http://h2o-release.s3.amazonaws.com/h2o/rel-lambert/5/docs-website/deployment/multinode.html

Building a Ubuntu-based single node instance of h2o

Assuming you had access to either a linux box with Ubuntu 16.04 (Ubuntu Xenial), or you provisioned cloud
resources again with Ubuntu 16.04 (Ubuntu Xenial), you could set-up a vm for both cases above as follows:

sudo apt-key adv –keyserver keyserver.ubuntu.com –recv-keys E298A3A825C0D65DFD57CBB651716619E084DAB9

sudo add-apt-repository ‘deb [arch=amd64,i386] https://cran.rstudio.com/bin/linux/ubuntu xenial/’

sudo apt-get update

sudo apt-get -y install gdebi-core libcurl4-openssl-dev openjdk-8-jdk openssl libssl-dev libxml2-dev libjpeg62
r-base

sudo R CMD javareconf

wget https://download2.rstudio.org/rstudio-server-1.1.442-amd64.deb

sudo gdebi -n rstudio-server-1.1.442-amd64.deb

Omit the last 2 lines, if you do not want to use RServer. In your firewall settings, you need to open the
following ports: 8787 (for RServer), and 54321 (for h2o).

Using NCI cloud resources

For the spring school, I’ve made each of you an 8-core virtual machine set up as above. If you find that
your laptop is struggling, or that the examples are consuming too much battery, use the login provided for
scenario 1 above and the remaining labs. Do, however, note that the 8-core VM may be slower than the
timings noted in labs here, so please adjust the size of your training samples (i.e. make them smaller). In
optimisation sections, you can also reduce the number of permutations (e.g. nfolds) and/or potentially the
number of parameters being optimised.

9

http://h2o-release.s3.amazonaws.com/h2o/rel-lambert/5/docs-website/deployment/multinode.html
https://cran.rstudio.com/bin/linux/ubuntu
https://download2.rstudio.org/rstudio-server-1.1.442-amd64.deb

	Introduction
	Setting up h2o

	Datasets
	MNIST: an introduction
	Movie Reviews: an introduction

	Getting started with h2o
	Simple Example: Parallel PCA
	Using Cloud resources
	Building a Ubuntu-based single node instance of h2o
	Using NCI cloud resources

