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Introduction to robust statistics

» Qutliers are observations that are surprising in
relation to the majority of the data:

* May be wrong - data gathering or recording errors -
transcription? electronic if not manual

» May be correct and informative for example about
departures from the assumed model. Ex. identifiable
subsets in medical studies

» Should always be checked

07/12/2015



Outline

 Simple sample
* Introduction to theoretical concepts
* M, S, MM, Tau estimators

* Regression
» Transformations
» Model choice

» Multivariate Analysis
* Clustering
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History of Robust statistics

» Awareness of the importance of immunizing against
outliers / gross errors is as old as the experimental
approach to science

* Thucydides (History of The Peloponnesian War):
“in 428 B.C. the Plataeans, besieged by the
Spartans, excluded extreme measurements when
estimating the height of the walls and managed to
break the siege”

History of Robust statistics

* Legendre: “if among these errors are some which
appear to be too large to be admissible, then [...]
will be rejected ™.

» Edgeworth: “the method of LS is seen to be our
best course when we have thrown overboard a
certain portion of our data ”.
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Why it is not sufficient to screen
data and remove outliers

* Users, even expert statisticians, do not always
screen the data.

* It can be difficult or impossible to spot outliers in
multivariate or highly structured data. Becoming
increasingly difficult with “Yet Bigger Data”

* Rejecting outliers affects distributions - variances
can be underestimated if data are ‘cleaned’. We
would like procedures with defined statistical
properties, such as size of tests. Machine learning?

Notation
Observations y1,...,¥Un
belonging to some sample space Y
Y1), - - - » Y(n) = order statistics

A parametric model Fy on the sample space
0eRP

T, =T(y1,...,y,) = estimator based on n observations




07/12/2015

Classical and robust theory

Classical Robust

 The observations are * F,is considered as a
distributed accordingto ~ mathematical abstraction
F, which is only an ideal

approximation to reality.
The goal is to produce

* Example statistical procedures

* F,=N(Y, ¢?) which still behave fairly

. 0= ) well under deviations
= (1 o9 from the assumed model

The grand plan

» Andrews et al. (1972) (the Princeton Robustness
Study), at which time it was expected that all
statistical analyses would, by default, be robust

* “any author of an applied article who did not use
the robust alternative would be asked by the
referee for an explanation”.




Prediction from 1972 Princeton study

* “From the 1970s to 2000 we would see ...
extensions to linear models, time series, and
multivariate models, and widespread adoption to the
point where every statistical package would take the
robust method as the default ...”

Importance of Robust
Statistics

A tremendous growth for about two decades from
1964

» However still not routinely used in practical data
analysis and standard software

» As we shall see, many sets of data contain
numerous outliers so robustness is a crucial aspect

* Recent developments are easy to apply and interpret
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Properties of estimators

* Consistency
 Equivariance

* Sensitivity curve

* Breakdown point

« Efficiency

* Influence function

» MaxBias

* Gross error sensitivity

Properties of estimators

A

T+ (G) = value of the estimator when
n — oo and data are from G

» Consistency: the results become more and more
precise when the number of observations increases

» Fisher consistency: at the model the estimator is
equal to the parameter or T, (F,) = 0
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Location equivariant estimators

* A location estimator T should be equivariant in the
sense when a constant is added to the data
(location) and when they are multiplied by a
constant (scale), you get:

T(eyr +d,...,cypn+d) =cT(y1,...,yn) +d

Example of location estimators

* Mean (¥)

» Median (Me)

* o - trimmed mean (trim a proportion a. from both
ends of the data set and then take the mean), (y,)

* o - Winsorized mean: replace a proportion o from
both ends of the data set by the next closest
observation and then take the mean.

» Example: 2, 4, 5, 10, 200

* Mean =44.2 Me =5

* 20% trimmed mean=(4 +5+ 10) / 3=6.33

» 20% Winsorized mean=(4+4+5+10+10)/5=6.6
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L-statistics
« REMARK: mean, a -trimmed mean and a - Winsorized
mean, median are particular cases of L-statistics

o |_-statistics: linear combination of order statistics. For
example

n
_ § : 1
T(yla s ayn) — aiYV(i) Ajn = — = Yy
1=
for n odd for n even
Ajn = 1 1= n;—] Ay pn = 1} i = %’ % +1
0 i # ”gl 0 otherwise
= Me

Scale equivariant estimators

* A scale estimator S should be equivariant, in the
sense that

S(ey1 +d,...,cy, +d) =

C

* Remark: the absolute value is needed because a
scale estimate is always positive
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Examples of scale estimators
» Standard deviation
* Interquartile range
IQRn = Y(n—[n/a]+1) ~ Y([n/4)
At F, = N(0,0%), IQR(F,) =28 Y0.75)0 # o

1
IQRN,, = 26-1(0.75) {Yn—[n/a41) = Y(jn/a) }

1/2®1(0.75) = 0.7413 = consistency factor

Examples of scale estimators

» Median Absolute deviation (MAD)

MAD,, = Me(ly; — Me(Yy)])

Normalized version

1

MADN, = ————
©-1(0.75)

MAD,, =1.4826 x MAD,,
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Example

« Location scale model y;~N (u, 62)

» Data Yy = {y4, ..., V10} are the natural logs of the
annual incomes of 10 people.

*9.529.68 10.16 9.96 10.08
*9.9910.479.919.9215.21

» Remark: the income of person 10 is much larger
than the other values.

Classical versus robust estimators

The 9 regular All 10
observations observations

y 9.965 10.49
Me 9.960 9.975
T 10.021 9.966
SD 0.27 1.68
IQRN 0.13 0.17

» Classical estimators are highly influenced by the outlier

* Robust estimate computed from all observations is
comparable with the classical estimate applied to non-
outlying data

* How to compare robust estimators?

07/12/2015
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(Standardized) sensitivity
curve (SC)

» Measure the effect of a single outlier on the estimator T;,.

« Assume we have n -1 fixed 0bs. Y,,_1 = {y1, ..., Vn-1}-
Add an n -th observation at y, which can be any real

number.
SC (y, T, Y1) = {Tpn(Yn—1,9y) — Tp(Yn_1)}n
« For the arithmetic mean SC (v, T}, Y1) =y — T,,_1
* Note that SC depends strongly on the dataset Y,,_;

Sensitivity curve (example)

« Annual income data: let . Yy consist of the 9 ‘regular’
observations

16 Sensitivity curve
L
B
I
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S > G,
| 05 Z
=
=
2
. 0 4
; ~F
& < —
= ghe —Y
& 05 g ——Me
X r== - —
= == Yoa
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9 9.2 94 96 98 10 10.2 104 10.6 108 M

y
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(Finite sample) breakdown point

» Given data set with n obs.

* If replace m of obs. by any outliers and estimator
stays in a bounded set, but doesn't when we replace

(m+1), the breakdown point of the estimator at that
data set is m/n.

* breakdown point of the mean =0

(Finite sample) breakdown point
of the median

* n IS even

Y1)y Y2y« Yn/2-1)s Y(n/2): Y(n/2)+1 3 y(n/2+2]a s Y

Arbitrarily replaced Me=0.5(y(n/2)+t¥m/2+1)) Arbitrarily replaced
* nis odd

Yy, Y@y, - - ay(%) 3 y(";rlﬁ y(ft;l}) vees Y(n)

- — S—— —
Arbitrarily replaced Me=y, 0 Arbitrarily replaced

n—1 . n 1 n—1
1.e. — — T
2 C 9T
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More formally

fco

V.. = the set of all datasets z of size n having n-m
elements in common with y

Yim=A{z:#(z)=n,#yNz)=n—m}

bdp(T, ,y) is the largest proportion of data points that
can be arbitrarily replaced by outliers without the
estimator leaving a set which is bounded and also
bounded away from the boundary of ¢ € ©

m* o — me >0 7
bdp(T,,y) = — ™ max{m > 0 : 1, bounded

and also bounded away from 00 V y € Y, }

d0 denotes the boundary of ¢

Robust statistics deals with
approximate models or model

deviations

* We need to define a neighbourhood of the parametric
model

* We consider the set of distributions
{GE = (1 — G)Fg + GW}

« W is an arbitrary distribution function
« What happens to bdp when data are generated from { G }?

Too(Ge) = value of the estimator when
n — oo and data are from G,

14



(Asymptotic) breakdown point (bdp)
* bdp(T,,F,) is the largest e* € (0, 1) such that fore < €* .

T(G,) as a function of W, remains bounded also bounded
away from the boundary of Q.

(Ge=(1-e)Fp+eW)

* In symbols: there exists a bounded and closed set
K c © suchthat X N 9O = () and

~

Too(Ge) = Too((1 — €)F 4 W) € K {Ve < €*and V¥ W)

(asymptotic) BDP

Location estimators Scale estimators
* y=0 « SD =0
* median = %2 * IQRN=0.25
* o -trimmed mean = o * MADN =0.5

* o - Winsorized mean = a

07/12/2015
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(Asymptotic) relative efficiency
(RE and ARE)

» For a fixed underlying distribution, the relative
efficiency (RE) of an estimator T, relative to that of
T, is A

RE (ﬁa: Tn) _ variance of ’Ijn

' variance of T,

« T, needs only RE times as many observations as T,
for the same variance

* Remark: use MSE for biased estimators
* ARE =limitof REasn —» o

Examples of ARE

« Symmetric distribution p = population mean = population
median

* ¥ = N(u, 6/n)
~ 11
*Me = N(“’n4f(u>2)
« At normal distribution ARE(Me; y) = 2/n =~ 64%
+ At t; ARE(Me; y) =96%.
« Att, ARE(Me; ) =112.5%
+ At t; ARE(Me; y) ~162.5%
« At t; ARE(Me; y) =

* Is t; really a better model for the error distribution than the
normal?

07/12/2015
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Robust statistics deals with
approximate models or model

deviations

 We need to define a neighbourhood of the
parametric model

» We consider again the set of distributions

{Ge=(1—e)Fy+eW}

» W is an arbitrary distribution function

» What happens to ARE when data are generated
from{G.}?

ARE with Fg

{Fe=(1—€)N(p, 0*) +eN(p, (t0)*)}
* i.e. not all measurements are equally precise
(1 —€) +er?

var(y) =
n

2(1 —e+¢€/7)?

1
var(Me) = — -
n

* Fort=3 ande >0.10 = ARE(Me; ) >1

07/12/2015
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Variance comparison
{Fe=(1—€)N(u, 0°) +eN(p, (10))}

=0.05 =0.10
10

) x var(mean)
=—==n x var(Me)

—_ i) - ——— i — e — -

Purpose: to develop estimates which combine the low
variance of the mean at the normal with the
robustness of the median under contamination

Contamination with point mass

(Ge=(1—€)Fy +eW)

* One particular case is when W is the set of point mass
distributions where the «point mass» 6, is the distribution
such thatP(y = yy) =1

Interpretation

F, generates with probability (1 — €) data from Fy
and with probability € data equal to g

{F.=(1—¢€)Fy+ 6(5y0}
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INFLUENCE FUNCTION
(Hampel, 1974)

» Describes how the estimator reacts to a small
amount of contamination at any point y,

» Approximation to the relative change in the
estimator caused by the addition of a small
proportion of spurious observations at y, (small
fraction ¢ of identical outliers)

Estimator in the
T(Fe contaminated

T(Fe) —T(Fg) model
Iim
e—0 €
Estimator 1 Infinitesimal
T(FQ) computed at true " amount_of _
value contamination

INFLUENCE FUNCTION (IF)

« Remark: the behaviour is referred to T,

~

Too (1 — €)Fy + €6yy) — Too (Fp)

I3 (yo, Fp) = 1611{)1 = -

€ | 0 stands for “limit from the right”

~

Too((1 — €)Fp + €6y,) = asymptotic value
of the estimate when the underlying distribution
is Fp and a fraction € of outliers is equal to yg

07/12/2015
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IF of y, Me, y, at N(l,1)

IF4(y, Fy) = y — p = unbounded

IFye(y, Fy) = Slggffzo_) )
185, 0. Fp) = S ity — ). 071 - )

PLOT OF THE INFLUENCE
FUNCTION AT N(0,1) (¥, Me, ¥, )

27T X sign
TFare(y, N(0,1)) = Y28 )
sign )
IFg, ,(y, N(0,1)) = 1g (232 min{|y — p/, 1.28}

07/12/2015
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SC and IF

* |F : small fraction ¢ of identical outliers

Too((1 — O Fy + €d,,) — T (F,
IFT(?Jo?Fa):lii(rjl ol = )Fp + €0y) = Too(F0)
€ €

» SC : fraction of contamination is 1/n

SC (y()af‘na Yn—l) = {Tn(Yn—layU) - Tn(yn—l)}n

SC (y0, T, Yn—1) = as. IF;:(yo, Ip)

SC and IF

Sensitivity curve of the
income data Influence function at N(0,1)

yo)}
~
1
\
1
1
1

2 49,4) — T(y1, - yg

_____ < _y
——Me

-~ Yoa

10 x {T(w,. ..

9 9.2 9.4 9.6 9.8 10 10.2 104 10.6 10.8 1 -3 - B
y y
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IF and max. asymptotic bias

A A

Too((1 = €)Fy + €dy) — Too (F
IF;(yo, Fy) = lim ool = IFo + cdyo) — Too ()
€ €

» If € is small the (asymptotic) bias

~

j%o((l _‘E)Pb +‘€5yo)'_{fgo(ﬁb)
Is approximated by
€ ><‘[laf(3ﬂ)a}?)
Remark: The IF (although it seems to be a particular measure of

influence), is sufficient to describe the max. asymptotic bias of
an estimator over a neighbourhood of the model because

Sup | T(Ge) = T(Fp)|| = esup |[{F;(yo, Fp)l|
Yo

{Ge=(1—-¢e)Fy+ W} {Fe=(1—€)Fy+ €y}

IF and bdp

* |F = deals with infinitesimal values of €
* bdp = largest € an estimator can tolerate

« If an estimator has bdp= €*, T (F) remains in a
bounded set when F belongs to G¢ withe < € *

{Ge=(1—¢e)Fy+ W}

» What is the worst behaviour of the estimator for
e<e*?

07/12/2015
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MAXIMUM BIAS (MB) and
BREAKDOWN POINT (bdp)

» The maximum (asymptotic bias) of T, is

A~

MBj (e,0) = max{ T (F) — 9‘ L Fe GE}

(Ge=(1—€)Fp + W)

» MB gives the maximal possible effect on T due to
any fixed fraction of contamination

bdp(Tso, Fp) = max {e >0: MB;,_(e,0) < oo}

Summary values of IF:
Gross error sensitivity (GES)

* The gross error sensitivity of T,, at F,

Y (T, Fy) = sup |1 Fx(yo, Fp)|
Yo

* GES measures the worst influence which a small
amount of contamination of fixed size can have on
the value of the estimator.

» Robust estimator = estimator with a bounded GES
* GES <o = B-robust (Bias robust)

07/12/2015
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Now for something
constructive

Classes of estimators which have desirable properties

Class of M estimators

» Generalization of maximum likelihood estimators
» Ty Tor 6 solve

' —1 i 6

mjn >_[-1og f ()

» M estimators are defined as the solution T;, for 6 of
the minimization problem

n
. ‘i:9
mgmzz_;p(y .0)

* p = some convex functionon Y X 6.
p need not be related to any density

07/12/2015
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Estimating equations

« Suppose that p has a derivative

5(056) = | 5000 g 0(3i6).

» then the estimate satisfies the implicit equation

> e(yi0) =0
i—1

* Note that if

Vi0) = | g ton(yi0). ...

we obtain the MLE

0
o lox0). |

M estimators of location

(y1,92,---,Yn) tid with common cdf F(y — 6)
M estimators of location solve

manp —9)01“27,0 i —0) =0 with ¢ = p/

Examples
2

ply) = % = ¥(y) =y = T, = 7 MLE for normal
- ‘y| = ¢(y) - Sign(y) = T, = Me
MLE for double exponential

How to choose p or ?

07/12/2015
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p and y functions

* A p function has the following characteristics
* p(u) is a non decreasing function of |u|

* p(0)=0
* p(u) is increasing for u >0 such that p(u) < p()

* A y function denotes a function which is the
derivative of a p function which implies

* y(u) is odd and y(u) >0 for u>0

Family of Huber functions
() = { (u2/2) lu/c] <1 () = { u if |u/c| <1

clu| —c?/2 |u/e| > 1 e xsign(u) |ufec| > 1

/’E'l 345

o

o
o

1, 1.345)

o - [S] w &~ o

1 (u, 1.345)
o

Pl

S
@

-1

c==1 o=t N
-3 -2 -1 0 1 2 3 ! ‘5—6
u

the limit cases ¢ —o, ¢ —0 are the mean and the median and we define
y(u,0)=sign(u). Monotonic ¥ function.

Brings in extreme observations to p+c.

tC_(I)rresponds to a density with normal centre and double-exponential
ails.

07/12/2015
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IF for (one dimensional
location) M estimators

— T
Il?f(@KMJFb) — f;iiisz —-jﬁ) )

 Bounded influence if y is bounded
« The influence function and the y have the same shape

« |F for location estimation with a previously computed

dispersion estimate G'is
0 (0 — Toe) /6

IFA(QOaFQ):(}OO .
' B! ((y = T) /30

Redescending estimators

1.6

1

o
3}

S
o

W (u, 1.345)
o

-1

-1.5
-6 -4 -2 0 2 4 6

* The influence curve (proportional to psi function) is
constant for all observations beyond a certain point.

+ An M-estimator can be made more resistant by having
the psi-function, (and hence the IF) return to 0.

07/12/2015
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Family of Hampel functions

u lu| < a
a x sign(u) a<l|ul<b
1/)(’“‘) - c—|ul : .
a—yp xsign(u) b<|ul <c

0 lu| >=¢

=)
~

@

@
=)
o

IS

[N}

Hampel p(u, [2,4, 8])

0
-10 -5 0 5 10

Has a redescending psi function

The 3 tuning constants provide flexibility for tuning the estimator.

How to choose a, b and c?

The rejection point

The y function of the Hampel is O for |u| larger than c.
Therefore the IF is O for |y| > ¢ 6. We say that the
rejection point is r= ¢ 6. Observations beyond the
rejection point do not contribute to the value of the

estimate (except possibly through the auxiliary scale
estimate)

The rejection point r is the least distance from the
location estimate beyond which observations do not
contribute to the value of the estimate (for a given
auxiliary scale estimate)

07/12/2015
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Winsor’s principle

» Winsor’s principle: «all distributions are normal in
the middle» =» we want to have a y function which
resembles the one that is best for Gaussian data.

* The ¢ function of MLE of p at N(y, ¢2) is linear
therefore the y for M-estimators of location should
be linear near the origin

* Y(u) = k u for small |u| (where k is a nonzero
constant usually standardized to k=1)

* Do you believe in Winsor’s principle?

Family of Tukey’s biweight

functions
@6 {1 -1 = (u/e)’PP} fu/e[ <1
plu) = { { (c2/6) } lu/e| > 1
oy (2 /6)ull — (u/c)?]® |u/c| <1
Plu) = { 0 lujc| > 1

0.8

0.6
Il 216

W(u,2)

-0.6
-6

20 -
C G
0.6 0.4
- 0.2
|
504 = 0
LS =
T 02
0.2
-0.4
0
-4 -2 0 2
U

4 6 -6 -4 =2 ] 2 4

* The constant c can be tuned for breakdown point
(efficiency). Redescending psi function

07/12/2015

29



Distribution of M estimators

* Let p, be the solution of
Ert(y — o) = 0.
* Centre of symmetry for symmetric F,

* Then the distribution of M estimator is asymptotically
normal

v . Ep{(y)?} A
N P 'L} ‘Z%Z_.
(0. 5p) it v {Er ()~ B?

The asymptotic relative efficiency is
ARE(fi) = vo/v

where v, is the asymptotic variance of the MLE

{Erv'(y)y® B

Goal: minimize variance subject to

N (,u(], i) with v =
n

» class of y function which have a finite rejection point

« control through a parameter k the change of variance
sensitivity of the M-estimators (to investigate the
infinitesimal stability of the asymptotic variance)

* Idea: define a psi functions with parameters A, B and k

* This has led to the hyperbolic tangent y function
(Hampel Rousseeuw and Ronchetti, 1981)

07/12/2015
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Hyperbolic tangent ¢ function

u lul| < d
W(u) = { Ak = 1) tanh (\/(k “1)BZJA(c — \u\)/2) sign(u) d < |u| < e,
0 lu| > c.

0<A<B<20(c)—1—2cxp(c) <1

» the central part of has to be linear in order to achieve a high asymptotic
efficiency at the model

* Note that A, B and d are automatically determined after fixing k and c

Location M-estimate: computations
« Equation iw(uz-ﬂl)=0 implies

sz‘(?ﬁ - ,&) =0 with w; = -;[;(yl- — ﬁ)/(yi — m_
i=1

» This suggests an iterative procedure

+ Given some initial estimate (for example the median) or an
estimate at step k ( i) compute
wz,k:W(yz_ﬂk)~ 7;:132:-"777’
sy = Z?:lwi,kyi
’ D i1 Wik

* Stop when py 4 — pil < €

07/12/2015
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Location M-estimate: computations

L4 n

A o Ejizliuakyi

M+l — —=n
Z«;:1 Wik

* ldea: downweight outliers

~

ot Heavily Downweighted

 If W is bounded and non increasing then the sequence
converges to a solution

* If y(u) is not monotone there may be multiple solutions

Comparison of W (u) A
u
Huber Hampel
1 1
0.8 0.8
0.6 0.6
04 0.4
0.2 0.2
0 0
5 2 B 0 2 4 6 6 2 0 2
w u
Tukey biweight Hyperbolic
1 1
0.8 0.8
0.6 0.6
04 0.4
0.2 0.2
0 0
-6 4 = 0 2 4 6 -6 2 0 2

07/12/2015
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Example with multiple solutions

y=[28 26 33 24 34 27 16 40 -2 29 22 24 21 253023 29 31 19
-44 -44 -44]; 6 = MADN, (efficiency set to 0.95)

Huber
2

1
N
Fo
=
e
A

-50 -40 -30 -20 -10 0 10 20 30 40 50

H
Biweight

0.5
—
i 5
=

-0.5

-1
-50 -40 -30 -20 -10 0 10 20 30 40 50
I

1

Hampel

-50 -40 -30 -20 -10 0 10 20 30 40 5

—
\|Lt

2
1

[=

1

0
-2

"
Hyperbolic

—

-50 -40 -30 -20 -10 0 10 20 30 40 5

I

M estimates of location are not
scale equivariant

« The adaptive weights are not independent of the
spread of the data (when the scale is not estimated)

®

Equally Downweighted

« Exceptions include the mean and the median.

07/12/2015
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M estimate of location with
auxiliary scale

 Use some (of course robust) estimate of scale, say
6, and replace r in p(r), Y(r) by (y — w)/é,

n
s —
[ = arg min E P (Jt - ,u,) =0
COp

i=1
N . Yi—H
= f‘ _— =
fi 2@( 5 ) |
* C= tuning constant
* 4, computed simultaneously?

M estimate of scale

» The MLE of ¢ for the scale family (%) f (%) is:
argmax, [T (7) £ (%5%)

g

» Taking logs and differentiating with respect to ¢ we obtain
Yi—H

(G
.l n _f Yi—HU —
" lzl{ EE) o } 1

ag

* Idea: in order to bound the effect of large (y; — u)/o
replace what is in { } by a p function

YL (BE) =6

« § = Ep (Z=E) for consistency at the normal distribution
o

07/12/2015
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M-scale as a weighted RMS estimate

« Equation = Zl 1p( “)=6

putting W (y) = p(y)/y?
can be rewritten as

Sl oy (VR (vR)
71}3i=]_VV'( o ) ( o ) =0
or as
1 Pp—
o? = (ﬁ) = W (yla #) i—m)?
» this is a weighted mean square estimate
* Remark: u is taken as known

Estimation of the M-scale

« Expression 2 = (n_ld) n W (3’1’;#
iterative procedure
» Start with some 4, (for example MADN)

* In general, given &;, (estimate of o at step k) find the
weightsas W (y;;—_”)
k

¢ 68 = (75) Zla W (5F) Gimw)?

~2 _ a2(1 n yi—#\ Vi—w)
620 = 6F () T w (H) o

O

) (y;—p)? suggests an

« Now given that W (y) = p(y)/y?

~2 _ ~2(1 n Yi—U ~21 _(yi—u
* Ok+1 = Ok (ﬁ) i=1p( ok ) ~Ok ap( ok )
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Simultaneous estimation of
location and dispersion

* It is necessary to solve the system of equations
° Z?:l Yiocation (%) =0

1 vi— Qi
* Z?=1;pscale (lT”) =4

o

* Remark: pgcqie In Order to distinguish it from the p function used
for location.

* Given starting values fi, and 6, (Me and MADN) or an estimate at
step k, i and &y, find the weights

_ Yi— Bk
* Wik = Wlocation( PY )
k
n
. _ Zi=1 WikVi
k+1 Z?=1 Wik

~2 _ ~2( 1 n Yi—Bk
® Of+1 = O (ﬁ) i=1 Pscale <—6k )

Now regression
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Regression setting

* Data (y;,x; ) i=1,2,...,n

* y; € R Response

* x; € RP Predictors

* Regression model y; = x/ S+ o u;

* Predict y; by xlTG

* Residuals for given fir; = r;(f) = y; — x B

M estimates of regression

« They are defined as solution 3 to
2 . . T B
[ = arg nnnzlp ( E? ))
n y ;
Z@ (7'9 )) x; = 0 where 1) = p/
a
i=1

* For regression it is necessary to replace

© y;—u or y(jj—_” in earlier expressions by 7; or ;—‘
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Desired properties
» Scale equivariance
Ui = cyi — B(wi, i) = cB(xi, vi)
« Affine equivariance
B = Awi — B(E,ui) = (A") 7' B(wi, a)
* Regression equivariance

Ui = yi + iy — Bl@i, 5) = B(wi, yi) +

Why regression equivariance?

*Ify=XB +uandy istransformedasy = y + Xy
theny =9y —-Xy=>y—-Xy=Xf+u=

y=Xp + Xy +u=3y=X(B +vy) +uthatis y satisfies
the regression model with parameter vector f = +y

« Therefore if § = 5 (X,y) is an estimate and data are
transformed as j = y + Xy we want that our new
estimate of S is transformed as 8 + y
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Computations (known scale)

* Recall LS regression: A= (XTX)"'XxTy
* The constraint is (normal eqs)

n

Z ri(B)z; = Opxa

i=1
* In robust regression the constraint is (weighted normal eqs)

with i = v/

* If w; were known the above equation could be solved
applying LS to /w;y; and\/w;z;

Adaptively weighted least squares

« Given some initial estimate of B say f,, first compute &
(for example MADN of the residuals)

* Fork=0,1,2....
« Given B, compute residuals and weights as follows
ik = Yi — .L;FBk 1=1,...,n w; = Y(rik/6)/(rik/F)

« Compute By, solving

, 1
n n n
E wip(yi — ] B) =0 Br1 = (Zwa,kxiiﬂ?) E W kYi T
i=1 i=1 i=1

« Stopwhen  max(|rix —rig1])/6 <€

07/12/2015

39



Remarks on the iterative
procedure

* The algorithm converges if W(x) is non increasing for x>0
* If y(u) is not monotone there may be multiple solutions

* For simultaneous estimation of 8 and o the procedure is the
same except that at each iteration & is also updated (as in
the location case)

Distribution of M estimates

« If X is fixed (or if x has a finite variance if it is random)

\/5(8 — ) —d Np(O, UQ'YVJJ_I)

Vy = E(zx') or V, = X' X if X is fixed
Ev(u/o)’
(Ey'(u/o))?

« Remark: if x has a finite variance the efficiency of g
does not depend on the distribution of x
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COV matrix of estimated parameters

~

V(B = B) —a Np(0,09V, 1)

* ¥ a correction factor depending on the ¥ function which
Is used )
1 T
EvY(u/o)? 4= n—p i ¥ (%)
- n 12
By (u/o))? [ i ()]

T

COV matrix of estimated parameters

V(B = B) —a Np(0,0%yV, )
* Huber and Ronchetti suggest 3 expressions to estimate V,

. 1 .
Ve = +—=——XTWX,

% Z?:l w;
where w; = w(r;/6) = a(r; /7)) /r;
and W = diag(wy, ..., w,).
» Huber derived another correction factor

w-lsie@-rer @)
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Least median of Squares (LMS)

mﬁin Me{r;(5)?*} mﬁin MAD{r;(8)}

* In the univariate case LMS becomes the Midpoint of the
SHORTest Half = SHORTH

« SHORTH = shortest interval that covers half of the
values |

Properties of LMS

* It is the centre-line of the shortest (narrowest) strip
containing ¥ of the data

* It does not require a scale estimate

* Regression, scale and affine equivariant
* bdp=0.5, Fisher consistent and asymptotically normal
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Drawbacks of LMS

* It displays marked sensitivity to central data values
(not locally stable)

« It is very inefficient (converges at a rate 1/3/n)

\/EHBA — B[ —p 00
I/nl|B — Bl = 0,(1)

Least Trimmed Squares
regression (LTS)

« Least squares: i ,
| min'$ " ()2
=1

h

: 2
« Least trimmed squares: mmz[fz‘ (B) 1)
i=1

r(8)%)1y < [r(8)*]i2) < - < [F(B)?](n)
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Characteristics of LTS

* A particular case of L-estimate of scale

* Regression, scale and affine equivariant

* Fisher consistent and asymptotically normal
.bdp,VInHKMn—h)

* converges at a rate 1/yn

* Low efficiency (EX. 7% at the normal distribution
when h=[n/2])

Regression S estimators

* LTS minimizes a robust residual scale estimate

Brrs = arg IIIilng(}LTS(IB)

1 h
— > (81
=1

* |dea: minimize a more efficient robust scale estimator

&LTS(/B) = min

* Regression S estimator minimizes an M estimate of scale

Bg = arg mingoa(3)
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Regression S estimators

* Least squares: min Y 7i(3)?
=1
* S estimates A
min ()

where for each 3, () solves

n

%ch (”f)) =K,

=1

bdp of S estimators

* If p satisfies the following conditions

1. It is symmetric and continuously differentiable, and p(0) = 0;

2. There exists a ¢ > 0 such that p is strictly increasing on [0, ¢|

and constant on [¢, 00);
3. It is such that K./p(c) = bdp, with 0 < bdp < 0.5,

» the asymptotic breakdown point of the S estimator
tends to bdp whenn — oo

» For consistency we require that

%;p (ngﬁ)) K, o, o (2)] = K.
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S estimates of regression. Tuning
constant associated with a bdp

* From the equations
Ke=bdp x p(c)  K.= Eg,, {p (%ﬂ

 we can compute c. For example for Tukey’s biweight p
function we have

2t <
=32 2@ Tea HIIEC
C 2 4 6 ) ,
T T T . .
'/—C (2 22 M bcl) Ao (2) + gPI'(|X| > ¢) = bdp x 5
Prixd <) Pr(xg < %) Pr(x? <¢?) ¢ ?
3 15 T o

S estimates of regression. Tuning
constant associated with eff

* From the equations \/E(B — B) =4 N,(0 JQ,YV—l)
E¢(u/o)?
- (BY/(u/0))?

* We can compute c. For example for Tukey biweight p
function we have

"C I (42 & p2 ) Ny ) < ] i N
/ U (2)dd(z) 13““"“' ) 6P <) i prz ). a9)
J—¢ C cs

Similarly, we obtain for {¢(x)}’

/ " (@) dd()

m!l’r(\f, <c?)

X

1 x 3!

Pr 2 2 . ,
206 <€) | prid < ). 20)
3
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Efficiency and breakdown point

Consistency factor ¢ (top panel) and efficiency (bottom
panel) as a function of the breakdown point (bdp) for
Tukey's Biweight.

50
40

o 30
20
10

0 0.1

0.2 0.3 0.4 0.5
Breakdown point (bdp)

(=]

Efficiency (eff)

o o o
[+2]

S

o

0.1 0.2

0.3 0.4 0.5
Breakdown point (bdp)

Efficiency and breakdown point

Consistency factor ¢ (top panel) and breakdown point
(bottom panel) as a function of the efficiency (eff) for
Tukey's Biweight.

o W & @ N

.5 0.6 0.9 1

0.7 0.8
Efficiency (eff)

Breakdown point (bdp)
(=]
nN

05 06 0.7 0.8 0.9 1
Efficiency (eff)
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TRADE OFF
robustness-efficiency

» Hossjer (1992): an S-estimate with break down point equal
to 0.5 has an asymptotic efficiency under normally
distributed errors that is not larger than 0.33.

Breakdown Consistency Asymptotic efficiency at

point (bdp) factor (¢) the normal model (eff)

0.05 7.5453 0.9924

0.10 5.1824 0.9662  Table 1 Breakdown point,

0.20 3.4207 0.8467  consistency factor and

0.25 5 9370 0.7590 asymptotic efficiency at the
' T T normal model for Tukey’s

0.30 2.5608 0.6613  Biweight loss function in

0.40 1.9880 0.4619  regression

0.50 1.5476 0.2868

S and LMS

* LMS is an S-estimate with a discontinuous p

function

« Davies shows that estimates based on smooth p
function have a convergence rate n=%°>

07/12/2015

48



Regression MM estimators

ain3 o 20

i=1 &S(BS)
» Idea: fix bdp=0.5 and using ppap=os find fs and &
using S estimators

* Fix eff=0.95, and using p.fr=¢.9s USiNg Bs and 6 as
starting values in the weighted least squares loop

« The estimate of the scale is kept fixed in the iterative
procedure

Claim of MM estimators

* HIGHLY ROBUST AND EFFICIENT

* Tukey’s biweight rho (TB):

* blue line bdp=0.5 =» ¢=1.548 (eff=0.29)
* red line eff=0.95 =» ¢=4.685 (bdp=0.12)

e
\‘ P

o © o
N »® ©

c =3
=

TB. Normalized p,.(z)

<

, ©
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Claim of MM estimators
* HIGHLY ROBUST AND EFFICIENT
* Tukey’s biweight W (TB):
* blue line bdp=0.5 =» ¢=1.548 (eff=0.29)
* red line eff=0.95 =» ¢=4.685 (bdp=0.12)

TB weight function t.(x)/z
o o o o o o o 1=}
N w -~ (&, (=2} ~ o ©

=}

(=}

Tau estimators (another attempt to
break the link between bdp and eff)

» Unlike MM estimates do not require a preliminary scale
estimate.

* If 6 (B) solves the usual scale equation

1« 7“7;(5))

_ co ~ = K(:()

n ;” (U(B)
* define the scale tau as

> omelx ri(5)

r(8)° = 6(8)*~ ;p (&(B))
* Aregression tau estimate is defined by
B = min7(3)
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Properties of tau estimators

! Z . (0(@) Ky TP =58Py, (a((g)) )

B) i=1
* Minimize a robust scale estimate (like S estimators) but
(unlike S estimators) with a controllable efficiency

* Note that if p., () = p, (r) = r? < LS criterion
* In this case function v is a linear combination of p., and p.,

« Claim: by an adequate choice of p the estimate can be made
arbitrarily close to the LS estimate and therefore arbitrarily
efficient at the normal distribution

Outlier detection

» We declare as an outlier any observation for which
the absolute scaled residual

[ri(B)|/6 > @711 — o)

» Small sample correction factor?
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Individual and simultaneous
testing procedures

Hy,; = yi ~ N(ai3,0%),
« which states that observation y; comes from the postulated
normal regression model.

* If the empirical test size is close to the nominal one, say «,
we should thus expect a proportion of false outliers close
to a for any uncontaminated data set (individual size)

 We can also use the whole set of n scaled residuals to test
the hypothesis that no contamination is present in the data:

HOEAH : H():l Mn...N H(),n.

* One expects to declare (at least one outlier) in a proportion
« of the datasets

Individual and simultaneous
threshold

 \We use Bonferroni corrections for simultaneity,
with level a* = =, so taking thel—a* cutoff value of

n
the reference distribution.

» Reference distribution: it is customary to use the
Chi squared reference distribution (although we are
using robust estimation)
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LTS
(estimation of variance)

SST(BMS mmz ri(8

« We base the estimator of o2 on this residual sum of
squares. However, since the sum of squares contains only
the central observations from a normal sample, the
estimate needs scaling. The var of truncated normal is:

cr%(h)—l—%fb (n;lh)qb{(b_l (n;;lh)}

¢ and @ are pdf and cdf of N(O,l)

« To estimate 2 we use _ 5 ST(Brrs)
Small sample corr? I X(j%(h)

LMS and LTS reweighted
(another attempt to break the link
between bdp and eff)

* Giving weight 0 to observations for which

Irersil = |ri(Brrs)|/orrs(h) > ®71(0.975)

» \We then obtain a sample of reduced size n—k, possibly
outlier free, to which OLS is applied.

« Let the parameter estimates be £, sz and 6,7z (h), the
outliers are the k, observations rejected at the second
stage

rersril = ri(Brrsr)| /orrsr(h) > 711 — a*)
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Huber and Ronchetti (2009)

* A plethora of alternative regression procedures have
been devised whose goal is to improve the
breakdown point ... Unfortunately, it seems that
these alternative approaches have gone overboard
with attempts to maximize the breakdown point,
disregarding important other aspects, such as having
reasonably high efficiency at the model. It is
debatable whether any of these alternatives even
deserve to be called robust, since they seem to fail
the basic stability requirement of robustness. An
approach through data analysis and diagnostics may
be preferable.

Robust regression in
action
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Hertzsprung

* Graph showing the
luminosity of a star
as a function of its
surface temperature

Russell diagram.

- luminosity (solar units)

The extracted data come from

o
=
£
=
o
w
=3
o
=
=
=]
|

the yellow square

Supergiants

Main is
sequence !

‘Giénls

40 ooo 20 ooo 10 ooo sS0ooo

Temperature [K] and spectral class
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Log light intensity vs Log effective surface
termperature (reverse order)
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A comparison of different fits
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Another example: a regression dataset
with masked outliers (AR data)

* 60 observations, 3 explanatory variables

+ + +
10 + + +
+ + +
+ +
5 e o T + &
+ + i+
L e HEY A
0 g + L e+
= + $+ + {'{ﬁ- +%}
+ ¥
+ o+ Hi+ 4
5t ihet ++ +PF+ +4++¢
+ Ra
LR +++#-q By
10 RS + + * BT
+* + ++
+ + +
15 + -+ +
2 0 2 -2 0 2 8 6 4 -2
X1 X2 X3

TRADITIONAL WAY OF DOING
STATISTICS IN REGRESSION

>> mdlr = fitlm(X,vy):
>> mdlr

Linear regression model:
vy~ 1+ x1 + x2 + x3

Estimated Coefficients:

Estimate SE tStat pValue
(Intercept) 11.174 0.67501 16.553 3.1288e-23
x1 -0.21796 0.17244 -1.264 0.21146
x2 1.4981 0.15534 9.6439 1.6733e-13
x3 2.2596 0.13668 16.531 3.3265e-23
Number of observations: 60, Error degrees of freedom: 56

Root Mean Squared Error: 1.09
R-squared: 0.965,
F-statistic vs. constant mode

Adjusted R-Squared 0.963
1l: 510,

p-value = 1.33e-40
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Statistics toolbox: RobustOpts on

»>>» mdlr = fitlm(X, v, 'RobustOpts', 'on'):
>> mdlr

mdlr =
Linear regression model (robust fit):

vy ~ 1+ x1 + x2 + x3

Estimated Coefficients:

Estimate SE tStat pValue
(Intercept) 11.415 0.71721 15.915 1.9345e-22
x1 -0.25422 0.18322 -1.3875 0.17078
x2 1.4662 0.16506 §.8832 2.7871e-12
x3 2.3066 0.14523 15.883 2.1262e-22

Number of observations: 60, Error degrees of freedom: 56
Root Mean Squared Error: 1.16

R-squared: 0.961, Adjusted R-Squared 0.959

F-statistic v constant model: 456, p-value = 2.59e-39

LS residuals against predicted values

[aN IS - ..
...
..
L
[ . e . .
e ® o o° ® 9
.I’ o @ L4
%)
-g o - q. & s IL
o e o
‘@ LJ e o
[ o ]
T . ® .
| - ©® -
o, o L °
(I\I_
® 43
T T T T T
-10 -5 0 5 10

Predicted values
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QQplot of studentized residuals

Studentized residuals
0
1

-2 -1 0 1 2

Quantiles of standard normal

S and MM estimators

* Breakdown point (bdp)= percentage of outliers the
estimator can cope with

* Efficiency (eff) = cov(betagogyst)/cov(beta, o)

* S = fix breakdown point (efficiency depends on
breakdown point). Ex. bdp=0.5 =» eff=0.29

* MM => fix efficiency. Ex. eff=0.95 =» bdp=0.12
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Analysis with robust S

estimators:

Index plot of residuals
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Analysis with robust
estimators: MM

95% nominal efficiency
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Traditional approach: compare
robust and non robust fit

* Robust Inference as well as Classical Inference

* “... just which robust/resistant methods you use is
not important — what is important is that you use
some. It is perfectly proper to use both classical and
robust/resistant methods routinely, and only worry
when they differ enough to matter. But when they
differ, you should think hard.”

—J. W. Tukey

Conseqguences of the use of
robust estimators

» Results obtained via a robust method are sometimes
completely different

* Both in the use of traditional robust and non-robust
statistical methods, researchers end up with a picture of the
data.

* WHY NOT TO WATCH A FILM OF THE DATA
ANALYSIS?
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Consequences of the use of
robust estimators

* Both in the use of traditional robust and non-robust
statistical methods, researchers end up with a picture of the
data analysis.

* The extension to more complex problems is difficult and
requires ad hoc techniques

* The researcher loses the information that each unit, outlier
or not, has on the final proposed estimate

Monitoring of scaled S
residuals

S residuals optimal p function
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How to summarize changes in fit?

We consider three standard measures of correlation:
Spearman. The correlations between the ranks of the two sets

of observations.

Kendall. Concordance of the pairs of ranks.

Pearson. Product-moment correlation coefficient

Monitoring of scaled S residuals

Tr

0.95
0.9
0.85

-~
S,
~
~
~

08

09
08
07

S residuals optimal p function

09

08

Spearman

041 0.31 021
Kendall

041 031 021

Pearson

07

041 0.31 021
bdp

0.01
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Hampel and hyperbolic rho
function

6}

S residuals Hampel p function
S residuals hyperbolic p function

EMPIRICAL BDP AND EFFICIENCY

Table: Empirical breakdown point and efficiency during monitoring for
the transition between very robust and least squares regression: five
estimators and four p functions. The values are for the step before the
switch to a non-robust fit

Estimator Bisquare Optimal Hyperbolic Hampel
S bdp 0.27 0.27 0.26 0.27
=085 bdp 0.38 0.40 0.41 0.41
=090 bdp 0.45 0.48 —a 0.50
=095 bdp —a —A —A —a
MM effic. 0.91 0.97 0.90 0.87

a For these values of 7 and p function, only non-robust solutions
were obtained during monitoring.
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Monitoring of scaled LTS residuals

LTS residuals

Spearman

1
0.9
0.8
0.7
0.41 0.31 0.21 0.11 0.01
Kendall
1
0.8
0.6
0.4
0.41 0.31 0.21 0.11 0.01
Pearson
1
0.9
0.8
0.7
0.41 0.31 021 0.11 0.01 0.41 0.31 0.21 0.11 0.01
bdp bdp

Monitoring of scaled LMS residuals

LMS residuals

8-

041 031 021 011 001
bdp

Spearman

1
0.9
0.8
0.7
0.41 0.31 0.21 0.11 0.01
Kendall
1
0.8
0.6
0.4
0.41 0.31 0.21 011 0.01
Pearson
1
0.8
0.6
0.4
0.41 0.31 0.21 0.11 0.01

bdp
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Forward Search in
Linear Regression

« STEPL: Start with very robust fit (LMS or LTS or
S), then successively fit to larger subsets, found as
those with the smallest residuals

» STEP2: Subset size increases until all the data are
fitted. From LMS (LTS or S) to LS

« STEP3: MONITORING (scaled residuals, beta
coefficients, ...)

L]

Step 2: Adding observations during
the Forward Search

Given S*(m), using b*(m), we compute the residuals for the n
observations and select those which have the smallest squared
m+1 residuals, m=p, p+1, ....,n

Step 1 e? Step 2 e’
2 2
" m)b'(m) —e(m)=| = [[m+1 } S"M+D)—sb’(m+1)—s e2(m+1) =| &

e? e’

*This step is repeated up to when all units are included into the subset

"""" E> Step 3 elz
$°(n) —— b"(n) — e?(n) =| 2

e
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07/12/2015

Characteristics of

i

m=p, p+1, p+2,...,n : .
What is outside at step m

“New philosophy” of data analysis

* Our philosophy involves watching a film of data
analysis rather than a snapshot.

* The crucial idea is to monitor how the fitted model
changes as bdp decreases (S) or eff increases (MM)
or, as in the “forward search”, whenever a new
statistical unit is added to the subset.

* The slides which follow show the analysis of the
AR data using the forward search
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Target

 Atool that preserves the interpretative and
computational simplicity of LS

* To develop a statistical approach that can attack
relevant inferential issues in a unified way

* [talian expression “Botte piena e moglie ubriaca”
(you can’t have your cake and eat it)

Squared scaled residuals

Monitoring of scaled residuals

T T T T T T
N
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N M Pt \ Y
~ " - 7 “
~
s T ~f \
N,
-, N
31 ,--d"‘\.--’ \\ ,l' YN
i Samae? TN ~ f""l’ \h’,’”"‘\\\
-, pm— -~ (kY
., Ly -
47 N g 2R TN
14+ ...-_-,-=~‘ _/7’ \\:_il o
n sm e f ~ s
38 I PSS e )
120 30 samzmzy, R e e
10 ‘‘‘‘‘
~

010 15 20 25 30 35 40 45 50 b5
Subset size m
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Monitoring of scaled residuals

Squared scaled residuals

: . T
15 20 25 30 35 40 45| Mouse Click on Plotted Data...
Subset size m

SIGNIFICANCE OF THE

EXPLANATORY VARIABLES

Standard static approach

All units Without unit 43
t0 16.55 17.64
tl -1.26 -1.93
t2 9.64 9.75
t3 16.53 17.66
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Two alternative formulae for robust
standard error in regression

Robust t stats

Traditional S t-stat optimal rho function

1 1 1 1 L I 1 1 ]
046 0.41 0.368 0.31 0.26 0.21 0.16 0.1 0.08 0.01

-
- ‘

201 *

b= o=” _“i - e e im -
15_2 L¥3 PR Y R - Y m m-

A - T

- -, g -———
1073 -~ 'l‘ ...................
sm
0 \
-5 1 1

046 041 0.36 0.3 0.26 0.21 0.18 0.1 0.08 0.01
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Monitoring of scaled t-statistics

Monitoring of t-stat

2571
t
20
15+
10} t
t
5F 1‘\“\'*\
A
of \
w
5 I L I I I
10 20 30 40 50 60

Subset size m

Monitoring of scaled t-statistic for first
variable

Monitoring of t.stat for first variable
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Log effective surface temperature

Stars data again

Analysis with the monitoring approach

Monitoring of scaled S
residuals

12- Spearman
1= A7
\
3, 0.9 I“
169! |
T~ 0.8
~ Vel TN
2 S-line 07
5 8F .~ 1\ 048 038 028 018 0.08
] RN
£ \-t\\ Kendall
\ — —
> ol W, -
=] AN 0.9
o AN
= \‘ ||
g 0.8 ‘\
B \
P 0.7 \‘
: |
-é o 048 038 028 018 0.08
17 E e
@
= 2+ N Pearson
w0 - =34 1 T
= ﬁ ‘ll‘
ol = 0.8 ‘\“
|
7 0.6 |
ol= n : \ 04
048 038 028 018 008 048 038 028 018 008

bdp.
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10r Spearman
- - - _ 1
30----- -
- BN 0.95
- ToTm NN 0.9
Nas Y 1
= A 0.85
g s
£ ~ 0.8
= 6r 052 062 072 082 092
=
N Kendall
U
£, !
5 af
= 0.9
T |[fm==-===-— - -
R ~ 0.8
o S
w ol -~
= 2 “'} 4 0.7
=
% 11 052 062 072 082 092
[
: o Pearson
=] 1
= 7
Ll 0.8
0.6
4l . . ' . 0.4
052 062 072 082 092 0.52 062 072 082 092
eff eff

Stars data. Empirical breakdown point (bdp) or efficiency (eff) for MM: five estimators and)
four p functions. The values are for the step before the switch to a non-robust fit

Estimator Bisquare  Optimal Hyperbolic Hampel
S bdp 0.17 0.17 0.17 0.17
7 =0.85 bdp 0.14 0.14 0.14 0.16
7 =10.90 bdp 0.17 0.16 0.16 0.20
T =0.95 bdp 0.26 0.21 0.24 —a
MM eff 0.98 0.99 0.97 0.96

# For this combination of 7 and p function, only non-robust solutions
were obtained during monitoring.
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Monitoring of FS residuals

90

80

70 |

60 [

50

Squared scaled residuals

5 10 15 20 25 30 35 40 45 50
Sithzat giza m

Hawkins data

» 128 observations
« 8 explanatory variables
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Hawkins data
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Example of static plots

QQ plot of studentized res.
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HD: monitoring of squared scaled residuals
(example of dynamic plot)

15

10
1

Scaled squared residuals

Subset size m

HD: monitoring of scaled residuals

Scaled residuals
(==}

7 1 1 Il 1 Il 1 Il Il 1 Il
20 30 40 50 60 70 80 90 100 110 120 130
Subset size m

» Example of dynamic plot
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Other quantities to monitor

* Maximum studentized residual among the
observations belonging to the subset

* Minimum deletion residual among the units not
belonging to the subset

Studentized residuals

- € _ Yi—Yi
;= —
sy/(1—hi) sy/(1—h)

We monitor: maximum studentized residual among
the units belonging to the subset

Tlm] = Max ‘?"é S(m)‘ for i € ng)

m=p+1,...,n.
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Deletion residuals

yi — xL 3(m*
ri(m*) = yi —ax; F(m*)

B V2L + hi(m*)}

imin = argmin | (m*)| for i¢ S

* We monitor the minimum deletion residual (MDR)
among the units not belonging to the subset

eimin (rn’v )

- Va2 (mH) {1+ hi, (m*)}

rznin (]n/ ' )

HD: Monitoring max. stud. res and MDR

=
g2
el
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el
0 © 4
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@ < 4
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20 40 60 80 100 120
o | )
o
El
32
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o
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Subset size m
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HD: Monitoring of s2

15

10

T T T T
0 20 40 60 80 100

Subset size m

T
120

Software
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S, MM, LTS, LMS, MCD, MVE
=» all implemented in FSDA

* S estimators
* Sreg
* Smult
* MM estimators
* MMreg
* MMmult

* LTS and LMS
* LXS

« MCD, MVE

How to compute

Brrs, Brums, Bs

« Computational algorithms are based on subsampling

* They are implemented in function LXS.m
* and
e Sreg.m
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Example: algorithms to find

/BLM S -
X S (p)
(nxp) (b X p) e’(p)
1 Xy Xl,p—l 1 % X1 pt (nx 1)
1 Xp = Xopa e?
Xn Xop1 ‘ R elz €{reas(p)
: : ! %p1 7 Yppt e’(p)=| 7
1 X an—l ef

By is based on the p-tuple
S*(p) which shows the smallest
median of squared residuals

The «heart» of the function LXS.m
for i=l:nsamp

% Extraction of a subset
s=randsample (n,p) ?

% X and y based on subset
Xb=X(s3,:):
yb=y(s):

% Compute the vector of coefficients using matrice ¥Xb and vyb
b=Xb\vyb:

% Residuals for all observations using b based on subset
r=y-X*b;

% Squared residuals for all the observations
r2=r."2;

% Ordering of squared residuals
r2s=sort (r2);
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The «core» of the function LXS.m

% Ordering of squared residuals 1
r2s=sort (r2):
if Ims==1:
rrob=rZs (h);
else
rrob=sum(r2s(1l:h)):
end
if rrob<rmin
% rmin = smallest ordered quantile or smallest truncated sum.

rmin=rrob;

% brob = \beta Ims or \beta lts
brob=b:
% bs = units forming best subset according to lms or lts
bs=s;
end

* An alternative algorithm to find /5,15 is based on the so
called concentration steps

« Given a candidate b1, let b2 be the LS
estimate based on the data corresponding
to the h smallest absolute residuals. The
scale estimate based on b2 is not greater
than the esimate based on bl

| = the set of indexes corresponding to the
smallest h squared residuals based on bl
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FAST LTS (1/2)

1. Findan initial b by LS using a random subset of p

observations

2. Calculate the residuals for the whole data set from a
model with the b just calculated

3. Use the subset of h observations with the lowest
squared residuals to estimate a new b via OLS.

4. Repeat from step 2. Each repeat of steps 2+3 is called a
concentration step, or a C-step.

1.Find an initial b by LS
using a random subset of p
observations

2.Calculate the residuals
for the whole data set
from a model with the b
just calculated

3.Use the subset of h
observations with the
lowest squared residuals
to estimate a new b via
LS.

4.Repeat from step 2.
Each repeat of steps 2+3 is
called a concentration
step, or a C-step.

%% Step 1

% subsample of p elements
s=randsample (n,p)

Xb=¥(3,:);

yb=y (s) ¢

% Regression using just p cbservations
b=regress (yb, Xb) ;

%% Step 2

% Residuals for all the observations
r=y-X*b;

% Sort squared residuals

[r2,IX] =sort(r.”2):

% Sum of smallest (n/2) squared residuals
r2LTS=sum(r2(1: (n/2))):

disp (r2LTS)

for i=1:6

%% Step 3

% Find the indexes of the units witht he smallest n/2 squared 1
IX1=IX(1:n/2):

% Find subset of y

yl=y (IX1):

% Find subset of X
X1=X(IX1,:):

% Find estimate of beta
bet=regress (yl,X1);:

just using subset of y and X

%% Repeat step 2

% r = residuals for all observations
r=y-X*bet;

% sort squared residuals

[r2,IX] =sort(r."2):

% sum of the smallest squared residuals (truncated sum)
r2LTS=sum(r2(1l:n/2));:
% show value of truncated sum at each iteration

disp (r2LTsS):
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07/12/2015

FAST LTS (2/2)

* The algorithm then repeats the entire process (steps 1-4) a
number of times (or until convergence)

 Each of these last repetitions yields an estimate of b.

* The final estimate is the best b of these ‘best’, that is the
b with the lowest sum of h squared residuals.

Dynamic visualization: the FSDA toolbox.
Downloadable from http://www.riani.it

P -1 ™ ¥ & * FSUA 100ID0X *

| Contents Search Resuits|_ )
|~ @ uaTLAB //%
N4 S0A Toobor] ==
@ Introduction to the forware £S DA

@ Product Overview

© < User Guide
# f* Functions Functions:
v Examples By Category
£y Demos Alphabetical List

J Release Notes
= & Spreadsheet Link EX Documentation Set
« @ Statistics Toolbox
Product Overview
Introduces Forward Search Data Analysis (FSDA) Toolbox™ software and gets you started
using it

User's Guide
Provides tutorials and comprehensive information about FSDA Toolbox software

Examples in Documentation
Lists major examples in the FSDA Toolbox documentation

Product Demos

Forward Search Data Analysis toolbox Demos
Presents a collection of demos that you can run from the Help browser to help you learn the
product

Support and feedback: write to toolboxFS@unipr.it

« The developers of the toolbox + The forward search group « Terms of Use - Trademarks « Acknowledgments
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Forbes data

* Minimum deletion
residual (mdrplot)

« Scaled residuals (resplot)

B Monitoring of Minimum deletion residual - S| 2 T8 Monitoring of Scaled Residuals - — S L
file Edit View Insert Tools Desktop Window Help » [|le £dit View Insert Tools Desktop Window Help
DEde| k(S U9LRL- 2 0B D NEde | k| © 9L A- QA 0E =D
(]
4
S S S
12 Envelope based on 17 obs. 35 12
3
25

Minimum deletion residual

Scaled residuals
&

2 4 G 8 10 12 14 16 18
Subset size m

6 8 10 12 14 16
Subset size m

Minimum deletion residual

Brushing and linking

« Option datatooltip * Option databrush

' e —
Envelope based on 17 obs. 44__—_____—____;\
T 12
12r mdr=12.4 1
Stepm=16
Unit(s) entered in step 17=12 3-
10 °
]
3
i b
]
b
T
| 3 -
[}
0
4 0
0-
2L
0 2 o 4 6 8 10 12 14 16 | ]
1% Subset size m -12 i
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Dynamic visualization:

the FSDA toolbox

Search

Contents | Search Results

£~ 2 |4 &y » FSDAToolbox * Demos »

FSDA Toolbox pemos

= & MATLAB
=& FSDA Toolbox
-4 Introduction to the forward search philosophy of data

@& User Guide
- f= Functions

+ Examples

J Release Notes
# & Spreadsheet Link EX
=& Statistics Toolbox

FSDA Toolbox™ provides statis
ward Search Data Analysis Toolbox™ s

@ Product O The Forward Sear
roduct Uverview graphical tools which enable us to explore the connection in the various. features of the different forward plots.

All Forward Search Data An
code, and create your own custom functions.

Hawkins data (4 min, 0 sec)

R

Multiple regression data (6 min, 17 sec)

6R

Fishery data (5 min, 52 sec)

R

& To be implemented in future releases of the product

& includes functions and interactive tools for analyzing and modei

ticians, engineers, scientists, researchers, financial analysts with a comprehensive set of toois to assess and undet

data, learning and teaching s

Search Data Analysis Toolbox™ supports a set of routines to develop robust and efficient regression analysis. In addition, & offers a ri

sis Toolbox™ functions are written i the open MATLAB® language. This means that you can inspect the algorithms

Product |

Two approaches to the

Forward Search

* Descriptive point of view 1998-2004
* Inferential point of view 2005-now

* Forward confidence bands for minimum deletion

residual (MDR)
« Strategy to keep into account multiple testing
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Example of the empirical distribution of
MDR (n=100, p=3)
(1%, 2.5%, 5%, 50%, 95%, 97.5% and 99% bands)

Minimum deletion residual
2
|
w _] K
o

0o

How to approximate the forward
distribution of the MDR

» Method 1: truncated samples
* Method 2: quantiles

» Method 3: exact order statistics (Riani Atkinson and
Cerioli, 2009; JRSSh)
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Forward MDR: comparison between theoretical and
empirical. Quantiles 1, 50 and 99%. n=400

gl

J

Automatic outlier detection
procedure (file FSR.m)

« Part I: signal detection

= upper envelope exceedance
« Part II: signal validation

= envelope superimposition

* Riani, Atkinson and Cerioli (2009), JRSSB
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Automatic procedure for outlier

8

detection: part | signal detection

Minimum deletion residual

Envelope based on 128 obs.

40 60 80 100 120
Subset size m

Automatic procedure for outlier

detection: part Il signal validation

Tyin (112, 84)

Prin (M, 85)

Ponin (112, 87)
P (86, 87) = 99% envelope
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Stars data. automatic FS

99.99%
57 v N T T T T T T
ANEEAY Fmin{m.,47). Signal is in step m = 43 because "'
AN . X (17 Iy
S VRSN Fonin (43,47) > 99.999% | 1y
45 - NN I
\ AN I £y
\ i
A N | 'll.l]
L ~ I, M
& Moo ~ T
W Ny Sa_ s e
i ~ < - <4
s
25
2
50%
1.5 -
s
Il —y
5 1%
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Stars data: envelope
T
1
N Fonin (M, 42) I N Funin(m,43)
4
3
2
1
) ] [
\ Fonin (2, 44) 6l o
\\A‘;{f-likuh‘l) > 99% envelope . ° L : .
~ : s
~ T+ 4
1
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45 “t JE
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35 4 45
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Subset size m
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An example with two overlapping groups:

hospital data (Neter et al. 1996)

* y = logged survival time of 54 patients undergoing
liver surgery

» Other 54 observations are introduced to check the
fitted model

* Neter et al.: “there is no systematic difference
between the two sets”.

Data description

* y = logged survival time of 108 patients undergoing
liver surgery

* X, = blood clotting score

* X, = prognostic index

* X3 = enzyme test

* X, = score for liver function
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Hospital data: yX plot
+ + ~+  First hospital + +
< Second hospital
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1090

Hospital Data: forward plot of MDR with envelopes
The difference in the two groups of observations is highly significant

o Envelope based on 108 obs. .:,: i

,99.999% :

Minimum deletion residual

10/ | | | & | | | |
792 30 40 50 60 70 80 20 100 o |

Subset size m
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Hospital data:
traditional robust analysis

LMS LTS

120

2 °F 1 o 4 1
R 1 £}
b1 T
@ q| 4 @
g e
(2] > - W o 4
= . e : :
=1 ] el o o
B . B 2 ,
B 99%band | 3 ° o
L @ 4 99% band
99.9907% band ] 59.9907% band
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\ i

99% band
99.9907% band

Scaled reweighted LMS residuals

[Scaled reweighted LTS residuals

B0

100

120

Monitoring MDR for the two groups
separately: hospital 1

sl ( T T T T T T
\ gnal is in step i = 35 because
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Monitoring MDR for the two groups
separately: hospital 2

°" 99.999%
Ay

\
\
L AN
42 99.99%
\\ \\
\, \\
N

T
‘i (. 54). No signal during the search

50%

Bank Data

A (much) more complicated example - there is no

simple model for all the data
* The aberrant observations do not seem to form a simple

cluster
* 1,949 observations on the amount of money made from

personal banking customers.
* The 13 explanatory variables describe the services used;

all are discrete, one binary.

» Which activities are profitable?

94



Bank data: the 13 explanatory

variables

Jank data: the thirteen explanatory wvariables

Variable

Number of

number Description Zeroes
1 Personal loans 1666
2 Financing and hire-purchase 1529
3 Mortgages 1734
1 Life insurance 1503
5 Share account 435
6 Bond account 987
7 Current account 27

8 Salary deposits 742
9 Debit cards 1030
10 Credit cards 1003
11 Telephone banking 1459
12 Domestic direct debits 126
13 Money transfers 1596

x1

First 10 lines of the dataset

« All explanatory variables are discrete, taking values

0,12,...

X3

R =R === =]

=== =R ==

o 0 0 0 o R oo

0

X3 X6 X7 x8

o o0 o0 o0 o oo oo
=R R R R =R L R =]
R R R R =]
RO R R R B R W
=R =R =R =N R SR

x1 = personal loans

X7 = current account

X9

[ N = RN =Y

x10

x11

=R === ==

=Rt === =N =TT

x12

3

[ S R T N )

x13

Y
506.0833
165.5833

262.25
92.33333
613.05
339.3333
247.5833
294.8333
3155
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Monitoring robust regression

Spearman
20r 1.02
- -
SISiSisie., 10
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P 0.5 04 03 0.2 0.1
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—
iy 1
£ \
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= ]
'_I.‘
= 09
= 05 04 03 02 0.1
T
= Pearson
wn 1.02
1.015
1.01
1.005
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_5 1 1 1 1 y
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bdp 7 bdp

Forward plot of minimum deletion
residual

Minimum deletion residual
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Monitoring t stat as a function of bdp
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Monitoring t stat as a function of subset
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Monitoring of t stat as function of bdp (S
estimator) or subset size (FS estimator)
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Monitoring of t stat as function of bdp (S
estimator) or subset size (FS estimator)
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Bank data. Scatterplots of y against individual explanatory variables for
the two parts of the data. Left-hand panel, the main body of the data.
Right-hand panel, the remaining, somewhat different, 255
observations.

1600} +
1400 +
i200f T

1000 +

Computational time of
the forward search?
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Fast efficient updating

» Theorem: Assume that just one unit joins the subset
from step m to step m+1. Then, S, ,, can be found with
2n+1 logical operations and the computation of a sum.

» On the other hand, if k>1 new units join the subset, it is
necessary to compute k additional minima and k
additional logical operations to find S,

The time is now a roughly linear
function of n.

w
n o

Amount of seconds
— N N
o (8,

o »w o o

0 2 4 6 8 10 0 2000 4000 6000 8000 10000

Sample size x10* Sample size
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In passing from a subset of size m to
a subset of size m+1, on average,
how many new units join the subset?

X axis = number of new units which join
subset in passing from m to m+1

n=1000 n=10000

Percentages

Percentages
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New routines for efficient
recursive updating

Comparison of computation time between the currently available version of
the FSDA software (solid line) and the new routines

Seconds

1 0 ¥
0 2 4 6 8 10 0 2000 4000 6000 8000 10000
Sample size x10* Sample size

Theoretical properties of the
FS

* Cerioli Farcomeni, and Riani (2014) show that the
estimates obtained at step m and are strongly
consistent under the null model and have
breakdown point 1 — m/n under contamination: the
FS yields consistent high-breakdown estimators,
but with adaptive breakdown point
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Nominal versus

1ze of
robust estimators
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Empirical size of simultaneous outlier tests (n
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Distribution of robust residuals

(normal gqg plot)
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How to compare robust
estimators

Average power: average percentage of true outliers
relative to the  contaminated observations taken over
all iterations.

Simultaneous power: average number of outliers (both
true and false) taken over all iterations.

Family wise error rate: average number of iterations
where at least one false outlier has been detected.

False discovery rate: average Bercentage of false
outliers relative to all outliers (both true and false) taken
over all iterations.

Proportion of declared outliers in good data: average
percentage of false outliers relative to all iterations,
divided by the number of non-contaminated
observations.

Regression: size and power comparison
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An example with international

trade data

R -1
45710 . . . ‘ . . —
A
4k 4
b
35 | C OO i
o O
fe¥e)
1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000
WEIGHT
40
1
35K 0.9
N
N
s N, 08
AN
0.7

S residuals optimal rho function

=10

0.49 0.39 0.29 0.19 0.09
Kendall

0.49

0.39

029 0.19

bdp

0.8
0.6
04
0.49 0.39 029 019 0.9
Pearson
1
0.8
0.6
. 04
0.09 0.49 0.39 0.29 0.19 0.09
bdp
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Monitoring of MM residuals

MM residuals optimal rho function

40r

A/ - — — - —m m m————— —— .
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Kendall

TN

.51 0.61 071 0.81 0.91

Pearson

0.51 061 071 0.81 091

eff

Monitoring of S and MM slope

MM slope

S slope

0.

30 029 019 009
bdp

VALUE
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Random starts monitoring
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Robust Transformations
IN Regression
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Robust transformations
In regression

b4 Help
File Edit View Go Favorites Desktop Window Help 3
£+ & (4o & B> FSToolbox * User Guide » Robust Regression Analysis * Transformations -
Contents | Search Results| FS Toolbox R
© @ MATLAB Provide feedback on FS toolbox
& FS Toolbox

Introduction to robust transformations in linear regression

+@ Introduction to the forward search philosophy of data analysis
@ Product Overview
& User Guide Several analyses of regression datasets can be improved by using a transformation of the response, rather than the
@ Dynamic Statistical Visualization original response itself, in the analysis of the data. More specifically the transformation may improve the
approximate normality or the homogeneity of the errors. In a lot of examples there are physical reasons why a
@ Robust Regression Analysis transformation might be expected to be helpful. For instance if the response is a non negative variable, cannot be
# Linear Regression subject to additive errors of constant variance.

Score test In this part of the toolbox we consider the parametric family of power transformations introduced by Box and Cox
(1964). A full discussion is given by Atkinson Riani (2000). Given that the estimated transformation and related test
statistic may be sensitive to the presence of one, or several, outliers, we use the forward search to see how the
estimates and statistics evolve as we move through the ordered data. As the user will see, influential observations
may only be evident for some transformations of the data. Since observations that appear as outlying in

Forward Score test
Transforming both sides
Variable Selection

@ Mutiverists Methods untransformed data may not be outlying once the data have been transformed, and vice versa, we employ the
@ Data Sets forward search on data subject to various d as well as on data.
@ Bibliography
% f Functions ¢ Score test
v Examples * Forward Score test
v Demos o T both sides of the equation

J Release Notes Provide feedback on FS 100Ibox

* @ Spreadsheet Link EX [®/Robust Forward Linear Regression with automatic outlier detection procedure Score test®
+ @ Statistics Toolbox
&y Other Demos - The developers of the toolbox - The forward search group - Terms of Use - Acknowledgments

Transformations of the
Response

« Simple power transformation y*
» Continuous power transformation (Box Cox)

y -1/
GiveslogyatA= 0
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The most widely used transformations are

ﬂ transformation

1 none
y(/l) _ ( ; _1)/1 0.5 square root

0 logarithmic

-1 reciprocal

Box Cox transformation

y(A)=(y* -1)/2

Normalized Box Cox transformation

ry/l_l
2(A) =3 16+ A#0
Glogy 4=0

G is the geometric mean of the observations
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Likelihood of transformed
observations

(270) ™" exp{—(y(\) — XB)" (y(N) — XB3)/20°}7,

ayt
ayz

7=11
i=1
The Jacobian allows for the change of
scale of the response due to the
transformation

In our example the Jacobian is
the determinant of the matrix

y1(N) Ayi(A) e Ay (A)

dy dy= OYn
Ay2(A) 33!2()\) L Oya(N)

J = dy dy2 fhﬁn
OYyn(A)  Oynl(A) OYn (A

dy1 ay» o OYn
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In our example the Jacobian is
the determinant of the matrix

vy 0 0
0 y ! 0
0 0 yn !

Expression for the Jacobian

J = H?zl ‘y?_l‘

J _ G n(A-1)
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A simpler but identical form for the
likelihood is obtained with the
normalized transformation defined as

2(A) = y(N)/ T,

y -1
/IG A-1

Z(A) =

for which the Jacobian is 1

The likelihood becomes

2702) 2 exp{—(z(\) = XB)T(z(\) — X3)/20?%}

For fixed A the likelihood is
maximized by the least squares
estimate

BN = (XTX)XxTz(N)
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The residual sum of squares of the
z(A) Iis

R\ =2z(MN)T(I —H)z(\) = z(\)T Az())

The maximum likelihood estimator
of 62 is

52(\) = R(\)/n.

The maximized log likelihood is

Linax(A) = —(n/2)1og{ R(A)/(n — p)}

So that the estimate of A minimizes
R(L)

R(A\) =2z(N)T(I — H)z(\) = 20T Az(\)
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* The model to be fitted is
z(A)=XB+¢

« That is ordinary least squares with
response z(4)

* For fixed A use LS

» Compare different A by RSS z(4)

* Or by likelihood ratio test

* Both require search over values of 4

=» score test for transformation

Likelihood ratio test
Trr = 2{Linax(A) = Linax(Ao)}

= nlog{R(Xo)/R(\)}

How is it possible to avoid to
compute the MLE of A?
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Score test for transformation
z(A)=x"B+¢

oz(A)

oA |,

2(A) = 2(4) + (A = A)W(A)
2(%) = X' B— (A= )W(A) +e&

The score test (H,: A= 4;) Is the t-statistic on
the constructed variable w(A4,)

2(4) = 2(4) + (A= 4)

How to construct w(4) from y

2(%) =X B~ (A—A)W() +&

w(A) = d=(A) AWy Mogy — (50 + A Hlog ) (vt 1)
U da (Agr—1)?

Ao A
yrlogy y -1, _ -
= St S A+ o) (120

Score test Is Implemented In
function score.m

z=(y.”la(i)-1)/(la(i)*G*(la(i)-1)):
w=(y."la(i).*log(y)-(y."1la(i)-1)*(1/1la(i)+log(G)))/ (la(i) *G" (la(i)-1));
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Disadvantage of the score test

* Does not allow identification of the individual
observations

* Is not robust to the presence of atypical observations

FAN PLOT

* Fan plot: forward plot of t test for the constructed
variable w(1) for five valuesof 1:-1,-0.5,0, 0.5
and +1. Usually enough

* FSRfan.m implements the monitoring of the score
test

» fanplot.m produces the fan plot

« Ex. wool data: factorial experiment, 3 expl.
variables
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Wool data: fan plot

151

Score test statistic

1 1
5 10 15 20 25 30
Subset size m

Fan Plot

* Central horizontal bands at +2.58, 1% (if normal
approx. OK)

» A=0 is supported by all the data

* For A =1and 0.5 last cases are 19, 20, 21: 3 largest
observations

* For A=-1and -0.5 last cases are 9, 8, 7: three
smallest observations

* For correct transformation, no order
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International trade data example

* 677 monthly aggregates of EU import flows of a fishery
product (y=Values, X= quantity)
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Score test statistic
o B

Dynamic visualization

Dynamic link from the fan plot to the yXplot
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An example about
regression with
transformations and outliers

Source: Atkinson and Riani (2006) JCGS
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y: the amount, in euros, spent at the shop over six months
x1: the number of visits to the supermarket in the six month period

* 509 observations on the behavior of customers with
loyalty cards from a supermarket chain in Northern
Italy

Example: loyalty cards

Variables

x: the age of the customer

x3: the number of members of the customer’s family.

SALES

3000

(? 10.00

Loyalty cards: yX plot
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Fan plot
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Monitoring minimum deletion residual
(zoom of final part)
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SALES
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Loyalty

cards: yX plot
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Monitoring residuals: dynamic
visualization through datatooltips

Scaled residuals
[

&

| Residual equal to: -5.727
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Monitoring residuals: dynamic

Fan plot

3

visualization through databrushing
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