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Introduction to 
Robust Statistics

Anthony Atkinson, London School of Economics, UK 

Marco Riani, Univ. of Parma, Italy

Introduction to robust statistics

• Outliers are observations that are surprising in 
relation to the majority of the data:

• May be wrong - data gathering or recording errors -
transcription? electronic if not manual

• May be correct and informative for example about 
departures from the assumed model. Ex. identifiable 
subsets in medical studies

• Should always be checked
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Outline

• Simple sample
• Introduction to theoretical concepts

• M, S, MM, Tau estimators

• Regression

• Transformations

• Model choice

• Multivariate Analysis

• Clustering
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History of Robust statistics

• Awareness of the importance of immunizing against 
outliers / gross errors is as old as the experimental 
approach to science 

• Thucydides (History of The Peloponnesian War): 
“in 428 B.C. the Plataeans, besieged by the 
Spartans, excluded extreme measurements when 
estimating the height of the walls and managed to 
break the siege”

History of Robust statistics

• Legendre: “if among these errors are some which 
appear to be too large to be admissible, then [...] 
will be rejected ”.

• Edgeworth: “the method of LS is seen to be our 
best course when we have thrown overboard a 
certain portion of our data ”. 
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Why it is not sufficient to screen 
data and remove outliers

• Users, even expert statisticians, do not always 
screen the data.

• It can be difficult or impossible to spot outliers in 
multivariate or highly structured data. Becoming 
increasingly difficult with “Yet Bigger Data”

• Rejecting outliers affects distributions - variances 
can be underestimated if data are ‘cleaned’. We 
would like procedures with defined statistical 
properties, such as size of tests. Machine learning?

Notation
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Classical and robust theory

Classical

• The observations are 
distributed according to 
Fθ

• Example

• Fθ=N(µ, σ2)

• θ= (µ, σ2)

Robust

• Fθ is considered as a 
mathematical abstraction
which is only an ideal
approximation to reality. 
The goal is to produce 
statistical procedures
which still behave fairly
well under deviations
from the assumed model

The grand plan

• Andrews et al. (1972) (the Princeton Robustness 
Study), at which time it was expected that all 
statistical analyses would, by default, be robust

• “any author of an applied article who did not use 
the robust alternative would be asked by the 
referee for an explanation”.
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Prediction from 1972 Princeton study

• “From the 1970s to 2000 we would see ... 
extensions to linear models, time series, and 
multivariate models, and widespread adoption to the 
point where every statistical package would take the 
robust method as the default ...”

Importance of Robust
Statistics

• A tremendous growth for about two decades from 
1964

• However still not routinely used in practical data 
analysis and standard software

• As we shall see, many sets of data contain
numerous outliers so robustness is a crucial aspect

• Recent developments are easy to apply and interpret
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Properties of estimators

• Consistency

• Equivariance

• Sensitivity curve

• Breakdown point

• Efficiency

• Influence function

• MaxBias

• Gross error sensitivity

Properties of estimators

• Consistency: the results become more and more 
precise when the number of observations increases

• Fisher consistency: at the model the estimator is
equal to the parameter or ෠𝑇∞(Fθ) = θ
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Location equivariant estimators

• A location estimator T should be equivariant in the 
sense when a constant is added to the data  
(location) and when they are multiplied by a 
constant (scale), you get:

Example of location estimators
• Mean (ത𝑦)

• Median (Me)

• α - trimmed mean (trim a proportion α from both 
ends of the data set and then take the mean), (ത𝑦α)

• α - Winsorized mean: replace a proportion α from 
both ends of the data set by the next closest 
observation and then take the mean.

• Example: 2, 4, 5, 10, 200

• Mean = 44.2 Me = 5

• 20% trimmed mean = (4 + 5 + 10) / 3 = 6.33

• 20% Winsorized mean = (4 + 4 + 5 + 10 + 10) / 5 = 6.6
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L-statistics
• REMARK: mean, α -trimmed mean and α - Winsorized

mean, median are particular cases of L-statistics

• L-statistics: linear combination of order statistics. For 
example

Scale equivariant estimators

• A scale estimator S should be equivariant, in the 
sense that 

• Remark: the absolute value is needed because a 
scale estimate is always positive
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Examples of scale estimators

• Standard deviation

• Interquartile range

Examples of scale estimators

• Median Absolute deviation (MAD)
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Example

• Location scale model 𝑦𝑖~𝑁(µ, σ
2)

• Data 𝑌10 = {𝑦1, … , 𝑦10} are the natural logs of the 
annual incomes of 10 people.

• 9.52 9.68 10.16 9.96 10.08

• 9.99 10.47 9.91 9.92 15.21

• Remark: the income of person 10 is much larger
than the other values.

Classical versus robust estimators
The 9 regular 

observations

All 10 

observations

ത𝑦
Me

ത𝑦0.10

9.965

9.960

10.021

10.49

9.975

9.966

SD

IQRN

0.27

0.13

1.68

0.17

• Classical estimators are highly influenced by the outlier

• Robust estimate computed from all observations is
comparable with the classical estimate applied to non-
outlying data

• How to compare robust estimators?
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(Standardized) sensitivity
curve (SC)

• Measure the effect of a single outlier on the estimator 𝑇𝑛.

• Assume we have 𝑛 -1 fixed obs. 𝑌𝑛−1 = {𝑦1, … , 𝑦𝑛−1}. 
Add an 𝑛 -th observation at y, which can be any real 
number.

• For the arithmetic mean

• Note that SC depends strongly on the dataset  𝑌𝑛−1

Sensitivity curve (example)

• Annual income data: let . 𝑌9 consist of the 9 ‘regular’ 
observations
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(Finite sample) breakdown point

• Given data set with n obs. 

• If replace m of obs. by any outliers and estimator 
stays in a bounded set, but doesn't when we replace 
(m+1), the breakdown point of the estimator at that 
data set is m/n.

• breakdown point of the mean = 0

(Finite sample) breakdown point
of the median

• 𝑛 is even

• 𝑛 is odd
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More formally

= the set of all datasets z of size n having n-m
elements in common with y

bdp(Tn ,y) is the largest proportion of data points that
can be arbitrarily replaced by outliers without the 
estimator leaving a set which is bounded and also
bounded away from the boundary of 

Robust statistics deals with 
approximate models or model 

deviations
• We need to define a neighbourhood of the parametric

model

• We consider the set of distributions

• W is an arbitrary distribution function

• What happens to bdp when data are generated from  
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(Asymptotic) breakdown point (bdp)

• bdp(T∞,Fθ) is the largest 𝜖∗ ∈ (0, 1) such that for 𝜖 < 𝜖∗ . 
T(G𝜖) as a function of W, remains bounded also bounded
away from the boundary of     . 

• In symbols: there exists a bounded and closed set 
such that and 

(asymptotic) BDP

Location estimators

• ത𝑦=0

• median = ½

• α -trimmed mean = α

• α - Winsorized mean = α 

Scale estimators

• SD =0

• IQRN= 0.25 

• MADN = 0.5
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(Asymptotic) relative efficiency
(RE and ARE)

• For a fixed underlying distribution, the relative 
efficiency (RE) of an estimator ෨𝑇𝑛 relative to that of 
෠𝑇𝑛 is

• ෠𝑇𝑛 needs only RE times as many observations as ෨𝑇𝑛
for the same variance

• Remark: use MSE for biased estimators

• ARE = limit of RE as 𝑛 → ∞

Examples of ARE

• Symmetric distribution µ = population mean = population 
median

• ത𝑦 ≈ N(µ, σ2/n)

• Me    ≈ N µ,
1

𝑛

1

4𝑓(µ)2

• At normal distribution ARE(Me; ത𝑦) = 2/π ≈ 64%

• At t5 ARE(Me; ത𝑦) ≈96%.

• At t4 ARE(Me; ത𝑦) ≈112.5%

• At t3 ARE(Me; ത𝑦) ≈162.5%

• At  t1 ARE(Me; ത𝑦) = ∞

• Is t5 really a better model for the error distribution than the 
normal?
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Robust statistics deals with 
approximate models or model 

deviations
• We need to define a neighbourhood of the 

parametric model

• We consider again the set of distributions

• W is an arbitrary distribution function

• What happens to ARE when data are generated
from 

ARE with 𝐹ε

• i.e. not all measurements are equally precise

• For τ=3  and ϵ > 0.10  ֜ARE(Me; ഥy)  > 1
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Variance comparison

Purpose: to develop estimates which combine the low
variance of the mean at the normal with the 

robustness of the median under contamination

Contamination with point mass

• One particular case is when W is the set of point mass 
distributions where the «point mass» δ𝑦0 is the distribution

such that P(𝑦 = 𝑦0) = 1

Interpretation



07/12/2015

19

INFLUENCE FUNCTION 
(Hampel, 1974)

• Describes how the estimator reacts to a small 
amount of contamination at any point 𝑦0

• Approximation to the relative change in the 
estimator caused by the addition of a small 
proportion of spurious observations at 𝑦0 (small 
fraction ε of identical outliers)

Estimator in the 

contaminated

model

Estimator 

computed at true

value

Infinitesimal

amount of 

contamination

INFLUENCE FUNCTION (IF)

• Remark: the behaviour is referred to ෠𝑇∞
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IF of ത𝑦, Me, ത𝑦α at N(µ,1) 

PLOT OF THE INFLUENCE 
FUNCTION AT N(0,1) (ത𝑦, Me, ത𝑦α )
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SC and IF

• IF : small fraction ε of identical outliers

• SC :  fraction of contamination is 1/𝑛

SC and IF

Sensitivity curve of the 
income data Influence function at N(0,1)
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IF and max. asymptotic bias

• If ϵ is small the (asymptotic) bias

is approximated by

Remark: The IF (although it seems to be a particular measure of 
influence), is sufficient to describe the max. asymptotic bias of 

an estimator over a neighbourhood of the model because

IF and bdp

• IF = deals with infinitesimal values of ϵ

• bdp =  largest ϵ an estimator can tolerate

• If an estimator has bdp= ϵ*, 𝑇∞(𝐹) remains in a 
bounded set when 𝐹 belongs to 𝐺ϵ with ϵ ≤ ϵ ∗

• What is the worst behaviour of the estimator for 
ϵ ≤ ϵ ∗?
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MAXIMUM BIAS (MB) and 
BREAKDOWN POINT (bdp)

• The maximum (asymptotic bias) of 𝑇𝑛 is

• MB gives the maximal possible effect on T due to 
any fixed fraction of contamination

Summary values of IF:
Gross error sensitivity (GES)

• The gross error sensitivity of 𝑇𝑛 at Fθ

• GES measures the worst influence which a small 
amount of contamination of fixed size can have on 
the value of the estimator. 

• Robust estimator = estimator with a bounded GES

• GES < ∞  B-robust (Bias robust)
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Now for something
constructive
Classes of estimators which have desirable properties

Class of M estimators

• Generalization of maximum likelihood estimators

• 𝑇𝑀𝐿𝐸 for θ solve

• M estimators are defined as the solution 𝑇𝑛 for θ of 
the minimization problem

• ρ = some convex function on  𝑌 × 𝛳.
ρ need not be related to any density
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Estimating equations

• Suppose that ρ has a derivative

• then the estimate satisfies the implicit equation

• Note that if

we obtain the MLE

M estimators of location

• M estimators of location solve

•
Examples:

How to choose ρ or ψ?
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ρ and ψ functions

• A ρ function has the following characteristics

• ρ(u) is a non decreasing function of |u|

• ρ(0)=0

• ρ(u) is increasing for u >0 such that ρ(u) < ρ(∞)

• A ψ function denotes a function which is the 
derivative of a ρ function which implies

• ψ(u) is odd and ψ(u) ≥0 for u≥0

Family of Huber functions

• the limit cases c →∞, c →0 are the mean and the median and we define
ψ(u,0)=sign(u). Monotonic 𝜓 function. 

• Brings in extreme observations to µ±c.

• Corresponds to a density with normal centre and double-exponential 
tails.
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IF for (one dimensional
location) M estimators

• Bounded influence if ψ is bounded

• The influence function and the ψ have the same shape

• IF for location estimation with a previously computed
dispersion estimate ෝσ is

Redescending estimators

• The influence curve (proportional to psi function) is
constant for all observations beyond a certain point.

• An M-estimator can be made more resistant by having
the psi-function, (and hence the IF) return to 0.
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Family of Hampel functions

• Has a redescending psi function

• The 3 tuning constants provide flexibility for tuning the estimator.

• How to choose a, b and c?

The rejection point

• The ψ function of the Hampel is 0 for |u| larger than c. 
Therefore the IF is 0 for |y| > c ෝσ. We say that the 
rejection point is r= c ෝσ. Observations beyond the 
rejection point do not contribute to the value of the 
estimate (except possibly through the auxiliary scale 
estimate)

• The rejection point r is the least distance from the 
location estimate beyond which observations do not
contribute to the value of the estimate (for a given
auxiliary scale estimate)
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Winsor’s principle

• Winsor’s principle: «all distributions are normal in 
the middle»  we want to have a ψ function which
resembles the one that is best for Gaussian data.

• The ψ function of MLE of µ at N(µ, σ2) is linear 
therefore the ψ for M-estimators of location should
be linear near the origin

• ψ(u) ≈ k u for small |u|  (where k is a nonzero
constant usually standardized to k=1)

• Do you believe in Winsor’s principle?

Family of Tukey’s biweight
functions

• The constant c can be tuned for breakdown point
(efficiency). Redescending psi function



07/12/2015

30

Distribution of M estimators

• Let µ0 be the solution of

• Centre of symmetry for symmetric 𝐹0
• Then the distribution of M estimator is asymptotically 

normal

The asymptotic relative efficiency is

where 𝑣0 is the asymptotic variance of the MLE

Goal: minimize variance subject to 

• class of ψ function which have a finite rejection point

• control through a parameter k the change of variance
sensitivity of the M-estimators (to investigate the 
infinitesimal stability of the asymptotic variance)

• Idea: define a psi functions with parameters A, B and k

• This has led to the hyperbolic tangent ψ function
(Hampel Rousseeuw and Ronchetti, 1981)
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Hyperbolic tangent ψ function

• the central part of has to be linear in order to achieve a high asymptotic 
efficiency at the model

• Note that A, B and d are automatically determined  after fixing k and c

• Equation implies

• This suggests an iterative procedure

• Given some initial estimate (for example the median) or an 
estimate at step 𝑘 ( ො𝜇𝑘) compute

• Stop when 𝜇𝑘+1 − 𝜇𝑘 < 𝜖

Location M-estimate: computations
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Location M-estimate: computations
•

• Idea: downweight outliers

• If W is bounded and non increasing then the sequence
converges to a solution

• If ψ(u) is not monotone there may be multiple solutions

Comparison of 𝑊 𝑢 =
𝜓 𝑢

𝑢
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Example with multiple solutions

y=[28 26 33 24 34 27 16 40 -2 29 22 24 21 25 30 23 29 31 19 
-44 -44 -44]; ො𝜎 = MADN, (efficiency set to 0.95)

M estimates of location are not
scale equivariant

• The adaptive weights are not independent of the 
spread of the data (when the scale is not estimated) 

• Exceptions include the mean and the median.
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M estimate of location with 
auxiliary scale

• Use some (of course robust) estimate of scale, say 
ො𝜎𝑛 and replace 𝑟 in 𝜌 𝑟 , 𝜓 𝑟 by (𝑦 − 𝜇)/ ො𝜎𝑛

• c= tuning constant

• ො𝜎𝑛 computed simultaneously?

M estimate of scale

• The MLE of 𝜎 for the scale family 
1

𝜎
𝑓

𝑦𝑖−𝜇

𝜎
is: 

argmax𝜎ς𝑖=1
𝑛 1

𝜎
𝑓

𝑦𝑖−𝜇

𝜎

• Taking logs and differentiating with respect to 𝜎 we obtain

•
1

𝑛
σ𝑖=1
𝑛 −

𝑓
′
𝑦𝑖−𝜇
𝜎

𝑓
𝑦𝑖−𝜇

𝜎

𝑦𝑖−𝜇

𝜎
= 1

• Idea: in order to bound the effect of large (𝑦𝑖 − 𝜇)/𝜎
replace what is in { } by a 𝜌 function

•
1

𝑛
σ𝑖=1
𝑛 𝜌

𝑦𝑖−𝜇

𝜎
= 𝛿

• 𝛿 = 𝐸𝜌
𝑦𝑖−𝜇

𝜎
for consistency at the normal distribution
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M-scale as a weighted RMS estimate

• Equation 
1

𝑛
σ𝑖=1
𝑛 𝜌

𝑦𝑖−𝜇

𝜎
= 𝛿

putting 𝑊 𝑦 = 𝜌(𝑦)/𝑦2

can be rewritten as

•
1

𝑛
σ𝑖=1
𝑛 𝑊

𝑦𝑖−𝜇

𝜎

𝑦𝑖−𝜇

𝜎

2
= 𝛿

or as

• 𝜎2 =
1

𝑛 𝛿
σ𝑖=1
𝑛 𝑊

𝑦𝑖−𝜇

𝜎
(𝑦𝑖−𝜇)

2

• this is a weighted mean square estimate

• Remark: 𝜇 is taken as known

Estimation of the M-scale

• Expression 𝜎2 =
1

𝑛 𝛿
σ𝑖=1
𝑛 𝑊

𝑦𝑖−𝜇

𝜎
(𝑦𝑖−𝜇)

2 suggests an 

iterative procedure

• Start with some ො𝜎0 (for example MADN)

• In general, given ො𝜎𝑘 (estimate of 𝜎 at step 𝑘) find the 

weights as 𝑊
𝑦𝑖−𝜇

ෝ𝜎𝑘

• ො𝜎𝑘+1
2 =

1

𝑛 𝛿
σ𝑖=1
𝑛 𝑊

𝑦𝑖−𝜇

ෝ𝜎𝑘
(𝑦𝑖−𝜇)

2

• ො𝜎𝑘+1
2 = ො𝜎𝑘

2 1

𝑛 𝛿
σ𝑖=1
𝑛 𝑊

𝑦𝑖−𝜇

ෝ𝜎𝑘

(𝑦𝑖−𝜇)
2

ෝ𝜎𝑘
2

• Now given that 𝑊 𝑦 = 𝜌(𝑦)/𝑦2

• ො𝜎𝑘+1
2 = ො𝜎𝑘

2 1

𝑛 𝛿
σ𝑖=1
𝑛 𝜌

𝑦𝑖−𝜇

ෝ𝜎𝑘
= ො𝜎𝑘

2 1

𝛿
ҧ𝜌
𝑦𝑖−𝜇

ෝ𝜎𝑘

• ...
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Simultaneous estimation of 
location and dispersion

• It is necessary to solve the system of equations

• σ𝑖=1
𝑛 𝜓𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

𝑦𝑖− ෝ𝜇

ෝ𝜎
= 0

• σ𝑖=1
𝑛 1

𝑛
𝜌𝑠𝑐𝑎𝑙𝑒

𝑦𝑖− ෝ𝜇

ෝ𝜎
= 𝛿

• Remark: 𝜌𝑠𝑐𝑎𝑙𝑒 in order to distinguish it from the 𝜌 function used
for location. 

• Given starting values Ƹ𝜇0 and ො𝜎0 (Me and MADN) or an estimate at
step k, Ƹ𝜇𝑘 and ො𝜎𝑘 find the weights

• 𝑤𝑖,𝑘 = 𝑊𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛
𝑦𝑖− ෝ𝜇𝑘

ෝ𝜎𝑘

• Ƹ𝜇𝑘+1 =
σ𝑖=1
𝑛 𝑤𝑖,𝑘𝑦𝑖

σ𝑖=1
𝑛 𝑤𝑖,𝑘

• ො𝜎𝑘+1
2 = ො𝜎𝑘

2 1

𝑛 𝛿
σ𝑖=1
𝑛 𝜌𝑠𝑐𝑎𝑙𝑒

𝑦𝑖−ෝ𝜇𝑘

ෝ𝜎𝑘

Now regression
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Regression setting

• Data (𝑦𝑖 , 𝑥𝑖 ) i=1, 2, …, n

• 𝑦𝑖 ϵ 𝑅 Response

• 𝑥𝑖 ϵ 𝑅
𝑝 Predictors

• Regression model 𝑦𝑖 = 𝑥𝑖
𝑇β + 𝜎 𝑢𝑖

• Predict 𝑦𝑖 by 𝑥𝑖
𝑇 ෠β

• Residuals for given β: r𝑖 = r𝑖(β) = 𝑦𝑖 − 𝑥𝑖
𝑇β

M estimates of regression

• They are defined as solution መ𝛽 to 

• For regression it is necessary to replace

• 𝑦𝑖 − 𝜇 or    
𝑦𝑖−𝜇

ෝ𝜎
in earlier expressions by 𝑟𝑖 or 

𝑟𝑖

ෝ𝜎
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Desired properties

• Scale equivariance

• Affine equivariance

• Regression equivariance

Why regression equivariance?

• If 𝑦 = 𝑋𝛽 + 𝑢 and 𝑦 is transformed as ෤𝑦 = 𝑦 + 𝑋𝛾

then 𝑦 = ෤𝑦 − 𝑋𝛾 ֜ ෤𝑦 − 𝑋𝛾= 𝑋𝛽 + 𝑢 ֜

෤𝑦= 𝑋𝛽 + 𝑋𝛾 + 𝑢 ֜ ෤𝑦= 𝑋(𝛽 + 𝛾) + 𝑢 that is ෤𝑦 satisfies 
the regression model with parameter vector ෨𝛽 = 𝛽 + 𝛾

• Therefore if ෡𝛽 = ෡𝛽 𝑋, 𝑦 is an estimate and data are 
transformed as ෤𝑦 = 𝑦 + 𝑋𝛾 we want that our new 

estimate of 𝛽 is transformed as ෡𝛽 + 𝛾
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Computations (known scale)
• Recall LS regression: 

• The constraint is (normal eqs) 

• In robust regression the constraint is (weighted normal eqs) 

with 

• If were known the above equation could be solved
applying LS to 

Adaptively weighted least squares

• Given some initial estimate of 𝛽 say  መ𝛽0,  first compute ො𝜎
(for example MADN of the residuals)

• For k=0, 1, 2 ….

• Given መ𝛽𝑘 compute residuals and weights as follows

• Compute መ𝛽𝑘+1 solving

• Stop when
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Remarks on the iterative 
procedure

• The algorithm converges if W(x) is non increasing for x>0

• If ψ(u) is not monotone there may be multiple solutions

• For simultaneous estimation of 𝛽 and 𝜎 the procedure is the 
same except that at each iteration ො𝜎 is also updated (as in 
the location case)

Distribution of M estimates

• If X is fixed (or if x has a finite variance if it is random)

• Remark: if x has a finite variance the efficiency of ෡𝛽
does not depend on the distribution of x
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COV matrix of estimated parameters

• 𝛾 a correction factor depending on the 𝜓 function which
is used

COV matrix of estimated parameters

• Huber and Ronchetti suggest 3 expressions to estimate Vx

• Huber derived another correction factor
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Least median of Squares (LMS)

• In the univariate case  LMS becomes the Midpoint of the 
SHORTest Half = SHORTH

• SHORTH = shortest interval that covers half of the 
values 

Properties of LMS
• It is the centre-line of the shortest (narrowest) strip 

containing ½ of the data

• It does not require a scale estimate

• Regression, scale and affine equivariant

• bdp=0.5, Fisher consistent and asymptotically normal
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Drawbacks of LMS

• It displays marked sensitivity to central data values
(not locally stable)

• It is very inefficient (converges at a rate 1/3 𝑛)

Least Trimmed Squares
regression (LTS)

• Least squares: 

• Least trimmed squares: 
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Characteristics of LTS

• A particular case of L-estimate of scale 

• Regression, scale and affine equivariant

• Fisher consistent and asymptotically normal

• bdp ≈
min ℎ,𝑛−ℎ

𝑛

• converges at a rate 1/ 𝑛

• Low efficiency (Ex. 7% at the normal distribution
when h=[n/2])

Regression S estimators

• LTS minimizes a robust residual scale estimate

• Idea: minimize a more efficient robust scale estimator

• Regression S estimator minimizes an M estimate of scale
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Regression S estimators

• Least squares: 

• S estimates

bdp of S estimators
• If 𝜌 satisfies the following conditions

• the asymptotic breakdown point of the S estimator 
tends to bdp when 𝑛 → ∞

• For consistency we require that
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S estimates of regression. Tuning
constant associated with a bdp

• From the equations

• we can compute c. For example for Tukey’s biweight 𝜌
function we have

S estimates of regression. Tuning
constant associated with eff

• From the equations

• we can compute c. For example for Tukey biweight 𝜌
function we have
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Efficiency and breakdown point

Consistency factor c (top panel) and efficiency (bottom 
panel) as a function of the breakdown point (bdp) for 
Tukey's Biweight.

Efficiency and breakdown point

Consistency factor c (top panel) and breakdown point 
(bottom panel) as a function of the efficiency (eff) for 
Tukey's Biweight.
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TRADE OFF 
robustness-efficiency

• Hössjer (1992): an S-estimate with break down point equal 
to 0.5 has an asymptotic efficiency under normally 
distributed errors that is not larger than 0.33. 

S and LMS

• LMS is an S-estimate with a discontinuous 𝜌
function

• Davies shows that estimates based on smooth 𝜌
function have a convergence rate 𝑛−0.5



07/12/2015

49

Regression MM estimators

• Idea: fix bdp=0.5 and using 𝜌𝑏𝑑𝑝=0.5 find መ𝛽𝑆 and ො𝜎𝑆
using S estimators

• Fix eff=0.95, and using 𝜌𝑒𝑓𝑓=0.95 using መ𝛽𝑆 and ො𝜎𝑆 as

starting values in the weighted least squares loop

• The estimate of the scale is kept fixed in the iterative 
procedure

Claim of MM estimators
• HIGHLY ROBUST AND EFFICIENT

• Tukey’s biweight rho (TB):

• blue line bdp=0.5  c=1.548 (eff=0.29)

• red line eff=0.95  c=4.685 (bdp=0.12)
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Claim of MM estimators
• HIGHLY ROBUST AND EFFICIENT

• Tukey’s biweight W (TB):

• blue line bdp=0.5  c=1.548 (eff=0.29)

• red line eff=0.95  c=4.685 (bdp=0.12)

Tau estimators (another attempt to 
break the link between bdp and eff)

• Unlike MM estimates do not require a preliminary scale 
estimate. 

• If ො𝜎 (𝛽) solves the usual scale equation

• define the scale tau as

• A regression tau estimate is defined by 
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Properties of tau estimators

• Minimize a robust scale estimate (like S estimators) but
(unlike S estimators) with a controllable efficiency

• Note that if 𝜌𝑐0 𝑟 = 𝜌𝑐1 𝑟 = 𝑟2  LS criterion

• In this case function 𝜓 is a linear combination of 𝜌𝑐0 and 𝜌𝑐1
• Claim: by an adequate choice of 𝜌 the estimate can be made 

arbitrarily close to the LS estimate and therefore arbitrarily
efficient at the normal distribution

Outlier detection

• We declare as an outlier any observation for which
the absolute scaled residual

• Small sample correction factor?
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Individual and simultaneous
testing procedures

• which states that observation 𝑦𝑖 comes from the postulated 
normal regression model. 

• If the empirical test size is close to the nominal one, say 𝛼, 
we should thus expect a proportion of false outliers close 
to 𝛼 for any uncontaminated data set (individual size)

• We can also use the whole set of n scaled residuals to test 
the hypothesis that no contamination is present in the data:

• One expects to declare (at least one outlier) in a proportion 
𝛼 of the datasets

Individual and simultaneous
threshold

• We use Bonferroni corrections for simultaneity, 

with level 𝛼∗ =
𝛼

𝑛
, so taking the1−𝛼∗ cutoff value of 

the reference distribution.

• Reference distribution: it is customary to use the 
Chi squared reference distribution (although we are 
using robust estimation)
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LTS 
(estimation of variance)

• Let

• We base the estimator of 𝜎2 on this residual sum of 
squares. However, since the sum of squares contains only
the central observations from a normal sample, the 
estimate needs scaling. The var of truncated normal is:

𝜙 and Φ are pdf and cdf of N(0,1)

• To estimate 𝜎2 we use 

Small sample corr?

LMS and LTS reweighted
(another attempt to break the link 

between bdp and eff)
• Giving weight 0 to observations for which

• We then obtain a sample of reduced size n−k, possibly 
outlier free, to which OLS is applied.

• Let the parameter estimates be መ𝛽𝐿𝑇𝑆𝑅 and ො𝜎𝐿𝑇𝑆𝑅(ℎ), the 
outliers are the 𝑘1 observations rejected at the second 
stage
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Huber and Ronchetti (2009)

• A plethora of alternative regression procedures have 
been devised whose goal is to improve the 
breakdown point … Unfortunately, it seems that 
these alternative approaches have gone overboard 
with attempts to maximize the breakdown point, 
disregarding important other aspects, such as having 
reasonably high efficiency at the model. It is 
debatable whether any of these alternatives even 
deserve to be called robust, since they seem to fail 
the basic stability requirement of robustness. An 
approach through data analysis and diagnostics may 
be preferable.

Robust regression in 
action
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Hertzsprung Russell diagram. 

• Graph showing the 
luminosity of a star 
as a function of its 
surface temperature

The extracted data come from 
the yellow square
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Log light intensity vs Log effective surface
termperature (reverse order)

A comparison of different fits
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Another example: a regression dataset 
with masked outliers (AR data)

• 60 observations, 3 explanatory variables

TRADITIONAL WAY OF DOING 
STATISTICS IN REGRESSION



07/12/2015

58

Statistics toolbox: RobustOpts on 

LS residuals against predicted values
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QQplot of studentized residuals

S and MM estimators

• Breakdown point (bdp)= percentage of outliers the 
estimator can cope with

• Efficiency (eff) = cov(betaROBUST)/cov(betaLS)

• S  fix breakdown point (efficiency depends on 
breakdown point). Ex.  bdp=0.5  eff=0.29

• MM  fix efficiency. Ex. eff=0.95  bdp=0.12
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Analysis with robust S 
estimators:

bdp=0.25

bdp=0.5

Analysis with robust
estimators: MM

90% nominal efficiency 95% nominal efficiency

Individual and simultaneous confidence
99% bands
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Traditional approach: compare 
robust and non robust fit

• Robust Inference as well as Classical Inference

• “... just which robust/resistant methods you use is 
not important – what is important is that you use 
some. It is perfectly proper to use both classical and 
robust/resistant methods routinely, and only worry 
when they differ enough to matter. But when they 
differ, you should think hard.”

– J. W. Tukey

Consequences of the use of 
robust estimators

• Results obtained via a robust method are sometimes 
completely different

• Both in the use of traditional robust and non-robust 
statistical methods, researchers end up with a picture of the 
data.

• WHY NOT TO WATCH A FILM OF THE DATA 
ANALYSIS?
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Consequences of the use of 
robust estimators

• Both in the use of traditional robust and non-robust 
statistical methods, researchers end up with a picture of the 
data analysis.

• The extension to more complex problems is difficult and 
requires ad hoc techniques

• The researcher loses the information that each unit, outlier 
or not, has on the final proposed estimate

Monitoring of scaled S 
residuals



07/12/2015

63

How to summarize changes in fit?

We consider three standard measures of correlation:
Spearman. The correlations between the ranks of the two sets 
of observations.

Kendall. Concordance of the pairs of ranks.

Pearson. Product-moment correlation coefficient

Monitoring of scaled S residuals
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Hampel and hyperbolic rho 
function

EMPIRICAL BDP AND EFFICIENCY
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Monitoring of scaled LTS residuals

Monitoring of scaled LMS residuals
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Forward Search in 
Linear Regression

• STEP1: Start with  very robust fit (LMS or LTS or 
S), then successively fit to larger subsets, found as 
those with the smallest residuals

• STEP2: Subset size increases until all the data are 
fitted. From LMS (LTS or S) to LS

• STEP3: MONITORING (scaled residuals, beta 
coefficients, …)

Step 2: Adding observations during
the Forward Search

•This step is repeated up to when all units are included into the subset

• Given S*(m), using b*(m), we compute the residuals for the n
observations and select those which have the smallest squared
m+1 residuals, m=p, p+1, …., n

m+1

Step 2
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Characteristics of 
the FS

What is inside at step m

What is outside at step m
m = p, p+1, p+2, …, n

“New philosophy” of data analysis

• Our philosophy involves watching a film of data 
analysis rather than a snapshot.

• The crucial idea is to monitor how the fitted model 
changes as bdp decreases (S) or  eff increases (MM) 
or, as in the “forward search”, whenever a new 
statistical unit is added to the subset.

• The slides which follow show the analysis of the 
AR data using the forward search
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Target

• A tool that preserves the interpretative and 
computational simplicity of LS

• To develop a statistical approach that can attack 
relevant inferential issues in a unified way

• Italian expression “Botte piena e moglie ubriaca” 
(you can’t have your cake and eat it)

Monitoring of scaled residuals
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Monitoring of scaled residuals

SIGNIFICANCE OF THE 
EXPLANATORY VARIABLES

Standard static approach

Tutte le unità Senza l'unità 43

t0 16.55 17.64

t1 -1.26 -1.93

t2 9.64 9.75

t3 16.53 17.66

All units Without unit 43



07/12/2015

70

Two alternative formulae for robust
standard error in regression

Robust t stats
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Monitoring of scaled t-statistics

Monitoring of scaled t-statistic for first 
variable
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Stars data again
Analysis with the monitoring approach

Monitoring of scaled S 
residuals
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Monitoring of MM residuals
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Monitoring of FS residuals

Hawkins data

• 128 observations

• 8 explanatory variables
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Hawkins data

y

Example of static plots

QQ plot of studentized res.
Residuals vs fitted values
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HD: monitoring of squared scaled residuals 
(example of dynamic plot)

HD: monitoring of scaled residuals

• Example of dynamic plot
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Other quantities to monitor

• Maximum studentized residual among the 
observations belonging to the subset

• Minimum deletion residual among the units not 
belonging to the subset

Studentized residuals

We monitor: maximum studentized residual among 
the units belonging to the subset
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Deletion residuals

• We monitor the minimum deletion residual (MDR)
among the units not belonging to the subset

HD: Monitoring max. stud. res and MDR
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HD: Monitoring of s2

Software
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S, MM, LTS, LMS, MCD, MVE 
 all implemented in FSDA

• S estimators
• Sreg

• Smult

• MM estimators

• MMreg

• MMmult

• LTS and LMS

• LXS

• MCD, MVE 

How to compute 

• Computational algorithms are based on subsampling

• They are implemented in function LXS.m

• and

• Sreg.m



07/12/2015

81



























1pn,n1

1p2,21

1p1,11

xx1

xx1

xx1









Example: algorithms to find























2

2

2

2

1

2 )(

ne

e

e

pe


2

)(],[ pSmedeMedianb (p)p units

X

(n x p)

S (p)

(p x p) )(2 pe

(n x 1)



























1pp,
x

p,1
x1

1p2,
x

21
x1

1p1,
x

11
x1









መ𝛽𝐿𝑀𝑆 is based on the p-tuple

S*(p) which shows the smallest

median of squared residuals

The «heart» of the function LXS.m
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The «core» of the function LXS.m

FAST LTS
• An alternative algorithm to find βLTS is based on the so 

called concentration steps 

• Given a candidate b1, let b2 be the LS 

estimate based on the data corresponding

to the h smallest absolute residuals. The 

scale estimate based on b2 is not greater

than the esimate based on b1  

I = the set of indexes corresponding to the 

smallest h squared residuals based on b1
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FAST LTS (1/2)

1. Find an initial b by LS using a random subset of p 
observations

2. Calculate the residuals for the whole data set from a 
model with the b just calculated

3. Use the subset of h observations with the lowest 
squared residuals to estimate a new b via OLS.

4. Repeat from step 2. Each repeat of steps 2+3 is called a 
concentration step, or a C-step.

1.Find an initial b by LS 
using a random subset of p 
observations

2.Calculate the residuals 
for the whole data set 
from a model with the b 
just calculated

3.Use the subset of h 
observations with the 
lowest squared residuals 
to estimate a new b via 
LS.

4.Repeat from step 2. 
Each repeat of steps 2+3 is 
called a concentration 
step, or a C-step.
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FAST LTS (2/2)

• The algorithm then repeats the entire process (steps 1-4) a 
number of times (or until convergence) 

• Each of these last repetitions yields an estimate of b.

• The final estimate is the best b of these ‘best’, that is the 
b with the lowest sum of h squared residuals.

Dynamic visualization: the FSDA toolbox. 
Downloadable from http://www.riani.it

http://www.riani.it/
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Forbes data

• Minimum deletion 
residual (mdrplot)

• Scaled residuals (resplot)

Brushing and linking

• Option datatooltip • Option databrush
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Dynamic visualization: 
the FSDA toolbox

Two approaches to the 
Forward Search

• Descriptive point of view 1998-2004

• Inferential point of view 2005-now

• Forward confidence bands for minimum deletion 
residual (MDR)

• Strategy to keep into account multiple testing
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Example of the empirical distribution of 
MDR (n=100, p=3)
(1%, 2.5%, 5%, 50%, 95%, 97.5% and 99% bands) 

How to approximate the forward 
distribution of the MDR

• Method 1: truncated samples

• Method 2: quantiles

• Method 3: exact order statistics (Riani Atkinson and 
Cerioli, 2009; JRSSb)
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Forward MDR: comparison between theoretical and 
empirical. Quantiles 1, 50 and 99%. n=400

p=4 p=7

p=10 p=13

Automatic outlier detection 
procedure (file FSR.m)

• Riani, Atkinson and Cerioli (2009), JRSSB

• Part I: signal detection 

 upper envelope exceedance

• Part II: signal validation

 envelope superimposition
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Automatic procedure for outlier 
detection: part I signal detection 

Automatic procedure for outlier 
detection: part II signal validation
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Stars data. automatic FS

Stars data: envelope
resuperimposition
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An example with two overlapping groups: 

hospital data (Neter et al. 1996)

• y = logged survival time of 54 patients undergoing 
liver surgery

• Other 54 observations are introduced to check the 
fitted model

• Neter et al.: “there is no systematic difference 
between the two sets”.

Data description

• y = logged survival time of 108 patients undergoing 
liver surgery

• x1 = blood clotting score

• x2 = prognostic index

• x3 = enzyme test

• x4 = score for liver function
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183

Hospital data: yX plot

184

Hospital Data: forward plot of MDR with envelopes 
The difference in the two groups of observations is highly significant

99.99% envelope
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Hospital data: 
traditional robust analysis

LMS LTS

Monitoring MDR for the two groups 
separately: hospital 1
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Monitoring MDR for the two groups 
separately: hospital 2

Bank Data

• A (much) more complicated example - there is no 
simple model for all the data

• The aberrant observations do not seem to form a simple 
cluster

• 1,949 observations on the amount of money made from 
personal banking customers.

• The 13 explanatory variables describe the services used; 
all are discrete, one binary.

• Which activities are profitable?
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Bank data: the 13 explanatory
variables

First 10 lines of the dataset

• x1 = personal loans

• …

• x7 = current account

• …

• All explanatory variables are discrete, taking values 

0, 1, 2,…
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Monitoring robust regression

Forward plot of minimum deletion
residual
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Monitoring t stat as a function of bdp

Monitoring t stat as a function of subset 
size
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Monitoring of t stat as function of bdp (S 
estimator) or subset size (FS estimator)

Monitoring of t stat as function of bdp (S 
estimator) or subset size (FS estimator)
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Bank data. Scatterplots of y against individual explanatory variables for 
the two parts of the data. Left-hand panel, the main body of the data. 

Right-hand panel, the remaining, somewhat different, 255 
observations.

Computational time of 
the forward search?
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Fast efficient updating

• Theorem: Assume that just one unit joins the subset 
from step m to step m+1. Then, Sm+1 can be found with 
2n+1 logical operations and the computation of a sum.

• On the other hand, if k>1 new units join the subset, it is 
necessary to compute k additional minima and k 
additional logical operations to find Sm+1

The time is now a roughly linear
function of n.
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In passing from a subset of size m  to 
a subset of size m+1, on average, 

how many new units join the subset?

X axis = number of new units which join 
subset in passing from m to m+1
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New routines for efficient
recursive updating

Comparison of computation time between the currently available version of 

the FSDA software (solid line) and the new routines

Theoretical properties of the 
FS

• Cerioli Farcomeni, and Riani (2014) show that the 
estimates obtained at step m and are strongly 
consistent under the null model and have 
breakdown point 1 − m/n under contamination: the 
FS yields consistent high-breakdown estimators, 
but with adaptive breakdown point
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Nominal versus 
empirical size of 
robust estimators

Empirical size of simultaneous outlier tests (n=50)

RED LINE = 
NOMINAL 
SIZE = 0.01

RED LINE = 

NOMINAL 

SIZE = 0.01
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Empirical size of simultaneous outlier tests (n=200)

RED LINE = 

NOMINAL 

SIZE = 0.01

RED LINE = 

NOMINAL 

SIZE = 0.01

Distribution of robust residuals
(normal qq plot)
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How to compare robust
estimators

• Average power: average percentage of true outliers 
relative to the contaminated observations taken over 
all iterations.

• Simultaneous power: average number of outliers (both 
true and false) taken over all iterations.

• Family wise error rate: average number of iterations 
where at least one false outlier has been detected.

• False discovery rate: average percentage of false 
outliers relative to all outliers (both true and false) taken 
over all iterations. 

• Proportion of declared outliers in good data:  average 
percentage of false outliers relative to all iterations, 
divided by the number of non-contaminated 
observations. 

Regression: size and power comparison
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An example with international
trade data

Monitoring of S residuals
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Monitoring of MM residuals

Monitoring of S and MM slope
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Random starts monitoring

Robust Transformations
in Regression
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Robust transformations 
in regression

Transformations of the 
Response

Gives log y at λ =  0

• Simple power transformation yλ

• Continuous power transformation (Box Cox)

 /)1( y
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The most widely used transformations are

transformation                                            

1 none

0.5 square root

0 logarithmic

-1 reciprocal



  /)1()(  yy

Normalized Box Cox transformation
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G is the geometric mean of the observations

  /)1()(  yy

Box Cox transformation
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Likelihood of transformed 
observations

The Jacobian allows for the change of 

scale of the response due to the 

transformation

In our example the Jacobian is 
the determinant of the matrix
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In our example the Jacobian is 
the determinant of the matrix

Expression for the Jacobian

)1(  nGJ
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A simpler but identical form for the 
likelihood is obtained with the 

normalized transformation defined as 

for which the Jacobian is 1 

   
1

)(
1











G

y
z

The likelihood becomes

For fixed  the likelihood is 

maximized by the least squares 

estimate
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The residual sum of squares of the 
z() is

The maximum likelihood estimator 

of 2 is

The maximized log likelihood is 

So that the estimate of  minimizes 

R()
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• The model to be fitted is

• That is ordinary least squares with 
response z(λ)

• For fixed λ use LS

• Compare different λ by RSS z(λ)

• Or by likelihood ratio test

• Both require search over values of λ

  Xz )(

Likelihood ratio test

How is it possible to avoid to 

compute the MLE of λ? 

 score test for transformation
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Score test for transformation

0

)(
)()()( 00











z
zz

)()()()( 000  wzz 

  Txz )(

  )()()( 000 wxz T

The score test (H0: = 0) is the t-statistic on 

the constructed variable w(0)

How to construct w(λ) from y

  )()()( 000 wxz T

Score test is implemented in 

function score.m
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Disadvantage of the score test

• Does not allow identification of the individual 
observations

• Is not robust to the presence of atypical observations

FAN PLOT

• Fan plot:  forward plot of t test for the constructed
variable w(λ) for five values of λ : - 1, -0.5, 0, 0.5 
and +1. Usually enough

• FSRfan.m implements the monitoring of the score 
test

• fanplot.m produces the fan plot

• Ex. wool data: factorial experiment, 3 expl. 
variables 
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Wool data: fan plot

Fan Plot

• Central horizontal bands at 2.58, 1% (if normal 
approx. OK)

• λ=0 is supported by all the data 

• For λ = 1 and 0.5 last cases are 19, 20, 21: 3 largest 
observations

• For λ = -1 and -0.5 last cases are 9, 8, 7: three 
smallest observations

• For correct transformation, no order  


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International trade data example
• 677 monthly aggregates of EU import flows of a fishery 

product  (y=Values, X= quantity)

Fan plot
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Dynamic visualization

Dynamic link from the fan plot to the yXplot

An example about 
regression with 

transformations and outliers 
Source: Atkinson and Riani (2006) JCGS
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Example: loyalty cards

• 509 observations on the behavior of customers with 
loyalty cards from a supermarket chain in Northern 
Italy

Variables

Loyalty cards: yX plot
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Fan plot

Transformed y: monitoring minimum 
deletion residual (MDR)
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Monitoring minimum deletion residual 
(zoom of final part)

yX plot (using transformed observations) 
with outliers highlighted
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Loyalty cards: yX plot
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Monitoring residuals
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Monitoring residuals: dynamic 
visualization through datatooltips

Monitoring residuals: dynamic 
visualization through databrushing


