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a b s t r a c t

Classical estimation techniques for linear models either are inconsistent, or perform rather poorly,
under α-stable error densities; most of them are not even rate-optimal. In this paper, we propose
an original one-step R-estimation method and investigate its asymptotic performances under stable
densities. Contrary to traditional least squares, the proposed R-estimators remain root-n consistent (the
optimal rate) under thewhole family of stable distributions, irrespective of their asymmetry and tail index.
While parametric stable-likelihood estimation, due to the absence of a closed form for stable densities,
is quite cumbersome, our method allows us to construct estimators reaching the parametric efficiency
bounds associatedwith any prescribed values (α0, b0) of the tail indexα and skewness parameter b, while
preserving root-n consistency under any (α, b) as well as under usual light-tailed densities. The method
furthermore avoids all forms of multidimensional argmin computation. Simulations confirm its excellent
finite-sample performances.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Evidence of heavy-tailed behavior and infinite variances in eco-
nomics and, evenmore so, in finance and insurance, is overwhelm-
ing. In such a context, the Gauss–Markov theorem for linear re-
gression1 no longer holds true, and the usual OLS estimators of
regression coefficients lose their theoretical justifications. Much
worse: they also lose their traditional2 root-n consistency rates.
OLS estimators under stable errors thus are not even rate-optimal:
Proposition 3.1 in Hallin et al. (2011) indeed establishes the local
asymptotic normality,with root-n consistency rates, of linearmod-
els with stable errors, irrespective of their tail index and skewness
parameter.

This disturbing fact is by no means a new finding: see Wise
(unpublishedmanuscript) or Blattberg and Sargent (1971) for early
discussion. Since then, the asymptotic behavior of estimators in

∗ Correspondence to: ECARES, Université libre de Bruxelles, CP 114/04, 50 Ave.
F.D. Roosevelt, B-1050 Bruxelles, Belgium.

E-mail address:mhallin@ulb.ac.be (M. Hallin).
1 Recall that the Gauss–Markov theorem establishes, for errors with finite

variance, that OLS estimators are best linear unbiased estimators.
2 Under the classical condition that the regression constants satisfy Assump-

tion (A1) below—an assumption we tacitly make throughout this section.

linear models with infinite variance and, more specifically, in
models with (non Gaussian) stable errors, has attracted much
interest, and several alternatives to OLS estimation have been
proposed. Those alternative estimators, however, either suffer
frommajor consistency problems, or are strictly inefficient and can
be improved: see Section 1.1 for a brief review. The objective of this
paper is to show how one-step R-estimation allows for a tractable
and quite substantial rate-optimal improvement.

1.1. Regression parameter estimation under stable errors

Before turning to R-estimation methods, let us briefly explain
why classical estimation methods fail to provide fully satisfactory
solutions.

(a) OLS estimators. As already mentioned, the main trouble with
OLS estimators is that their consistency rate depends on
the tail index α. This follows from the general results by
Samorodnitsky et al. (2007) on a class of linear unbiased
estimators (see point (c) below). That rate is strictly less than
the optimal root-n rate, which is a severe drawback. Moreover,
the related asymptotic confidence regions and Wald tests
cannot be constructed without estimating α itself.

(b) Stable MLEs. OLS estimators are the maximum likelihood es-
timators (MLEs) associated with Gaussian likelihoods; better

0304-4076/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.jeconom.2012.08.016
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performances can be expected from stable likelihoods (involv-
ing the four parameters of stable densities along with the
regression coefficients of interest). A pioneering result by Du-
Mouchel (1973), indeed, shows that, somewhat surprisingly,
stable MLEs (for location, scale, the tail index α, and the skew-
ness parameter b) yield a very standard asymptotically nor-
mal behavior, with traditional root-n rates. This result easily
extends to the regression case.3 Practical implementation, of
course, runs into the problem that non Gaussian stable den-
sities, hence stable likelihoods, cannot be expressed in closed
form. For specified tail index α and skewness parameter b, this
is not an obstacle anymore thanks to the computationally ef-
ficient integral approximations obtained by Zolotarev (1986,
1995), Nolan (1997, 1999) and several others. But in prac-
tice, the tail index and the skewness parameter also have to
be estimated; the information matrix, moreover, is not block-
diagonal (see DuMouchel (1975)), so that the estimators α̂

and b̂ of α and b cannot simply be plugged into the informa-
tion matrix when confidence regions or Wald tests are to be
constructed for the regression parameters. Although asymp-
totically optimal, stable-likelihood-based inference in practice
thus seems difficult.

(c) Linear unbiased estimators. A broad class of linear unbiased
estimators, of which OLS estimators are a particular case, has
been considered by Samorodnitsky et al. (2007), who also
provide a quite complete and systematic picture4 of their
asymptotic behavior. Consistency rates, as a rule, crucially
depend on the tail index α of the underlying noise, and
are strictly less than the optimal root-n ones; asymptotic
covariances depend on α as well. All the drawbacks of OLS
estimation thus also are present here. The BLUαN (best
linear unbiased estimator, relative to some adequate α-norm—
limited to 1 < α < 2) estimators considered in El Barmi and
Nelson (1997) suffers from the same problems.

(d) LAD estimators. The bad performances of L2 estimators (OLS)
considerably reinforce the attractiveness of the L1 approach.
The so-called LAD (Least Absolute Deviations) estimators (a
particular case of more general quantile regression estimators
in the Bassett and Koenker (1978) style) indeed, irrespective
of the tail index α, achieve (under Assumption (A1)) root-n
consistency. The asymptotic properties of LAD estimators in
regression models have been studied intensively: see Bassett
and Koenker (1978) for the standard case, Knight (1998) or El
Bantli and Hallin (1999) for more general results. Contrary to
stable MLEs, BLUEs and OLS estimators, the LAD ones, thus,
achieve rate-optimal consistency. Constructing the related
confidence regions and Wald tests is possible via classical
techniques, without any estimation of α. These advantages
of LAD estimation in the stable context were emphasized as
early as 1971 by Fama and Roll (1971). On the other hand,
LAD estimators, which are optimal under light-tailed double-
exponential noise, cannot be efficient under any heavy-tailed
stable density. The objective of this paper is to show how LAD
estimators can be improved, often quite substantially, without
specifying or estimating the tail index α.

3 The situation is quite different for autoregressive and ARMA models (local
experiments are no longer of the LAN type), with n1/α consistency rates under tail
index α, and convergence in distribution to the maximizer of a random function;
see Andrews et al. (2009) for recent results in that context.
4 Under very general assumptions on the asymptotic behavior of the regression

constants (more general than Assumptions (A1) and (A2) below), but assuming
symmetric heavy-tailed errors—an assumption we do not make here.

1.2. R-estimation under stable errors

Estimation methods based on ranks – in short, R-estimation –
go back to Hodges and Lehmann (1963), who provide R-estimators
for one-sample and two-sample locationmodels (under symmetric
distributions, for the one-sample case), based on the Wilcoxon
and van der Waerden (signed) rank statistic. Since then, the
technique has been used in a variety of problems, including K -
sample location, regression and analysis of variance, time series
analysis and elliptical families—see, e.g., Lehmann (1963), Sen
(1966), Jurečková (1971), Koul (1971), Jurečková and Sen (1996),
Koul and Saleh (1993), Allal et al. (2001), Koul (2002), Hallin
et al. (2006), Hallin and Paindaveine (unpublished manuscript),
and many others.

Ranks naturally appear as maximal invariants in semiparamet-
ric models where the density f of some unobservable noise con-
stitutes the infinite-dimensional nuisance. Under classical Argmin
form, the Hodges–Lehmann or R-estimator ϑ (n)

HL of a parameter ϑ

is defined as

ϑ (n)
HL := argmin

t∈RK
|Q (n)(R(n)(t))|, (1.1)

where Q (n)(R(n)(ϑ0)) is a (signed)-rank test statistic for the null

hypothesis H0 : ϑ = ϑ0 (two-sided test). The main advantage of
ϑ (n)

HL over more usual M-estimators follows from the fact that (un-

der parameter valueϑ and error density f , and standard root-n con-
sistency conditions), n1/2(ϑ (n)

HL − ϑ) is asymptotically equivalent

to a function which depends on the unknown actual density f but
is measurable with respect to the ranks R(n)(ϑ) of the unobserv-
able noise (see Hallin and Paindaveine, unpublished manuscript
for details). The asymptotic relative efficiencies (AREs) of the R-
estimator ϑ (n)

HL defined in (1.1) with respect to other R-estimators,

or with respect to its Gaussian competitor (OLS or Gaussian MLE,
whenever the latter are root-n consistent) are the same as the AREs
of the corresponding rank testswith respect to their Gaussian com-
petitors.5

The Argmin form (1.1), however, is computationally inconven-
ient—particularly so in the case of a relatively high-dimensional
parameter ϑ. Inspired by Le Cam’s one-step estimation method,
Hallin et al. (2006), in the context of R-estimation of shape
matrices in elliptical families and Hallin and Paindaveine (unpub-
lished manuscript), in a more general context, therefore intro-
duced a one-step form of R-estimation. That method, contrary to
(1.1), avoids the computational inconvenience of minimizing, over
a possibly high-dimensional parameter space, a piecewise constant
function of the form |Q (n)(R(n)(t))|; moreover it also provides, as a
by-product, the asymptotic covariance matrix of the R-estimator.
On the other hand, one-step methods require the existence of a
preliminary rate-optimal consistent (here, root-n consistent) esti-
mator. This role will be played, in the present context, by the LAD
estimator, the only one in the existing literature enjoying the re-
quired consistency properties. Our R-estimators thus appear as a
one-step improvements over the LAD estimators; they yield the
same collection of ARE values as the corresponding rank-based
tests, the values of which were obtained in Hallin et al. (2011).

In this paper, we explain how that one-step method can be
implemented for the estimation of the regression parameter of

5 Since Gaussianmethods are generally invalid under stable error densities, AREs
in the sequel are taken with respect to double-exponential likelihood procedures,
that is, least absolute deviation (LAD) estimators and the regression version of sign
tests (the Laplace rank tests).
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a general linear model with stable errors, and we study the
asymptotic performances of the resulting R-estimators. Those
R-estimators rely on a rank-based version of Le Cam’s one-
step methodology which bypasses the nonparametric estimation
of cross-information quantities. They are asymptotically normal
under any stable density (with standard root-n rate), and efficient
at some prespecified stable density fθ . They exhibit the same
asymptotic relative efficiencies as the rank-based tests studied
in Hallin et al. (2011). For specific scores, they outperform LAD
estimators, and hence all valid and tractable estimation methods
proposed in the literature. In particular, when based on certain
stable scores, such as the score associated with the symmetric
stable distribution with tail parameter α = 1.4 (see Fig. 2), they
dominate the LAD under any stable distribution with α ∈ (1, 2).
The computational advantages of one-step R-estimators over the
more classical Argmin ones lie in the fact that the K -dimensional
minimization (1.1) of a non convex piecewise constant rank-
based objective function is replaced by the minimization of a
continuous, strictly convex L1 criterion (yielding the preliminary
LAD estimator), followed by a one-dimensional optimization
problem; the LAD estimator, moreover, can be obtained exactly as
the solution of a linear programming problem. Tables 1–4 provide
numerical evidence of the quite substantial advantages (in terms
of asymptotic relative efficiencies, bias and mean squared errors)
of one-step R-estimation over its classical Argmin counterpart.

2. R-estimation of regression coefficients

2.1. Asymptotics for linear models with stable errors

The family of α-stable densities is a four-parameter family
fθ = fα,b,γ ,δ | θ := (α, b, γ , δ)′ ∈ Θ := (0, 2] × [−1, 1]

× R+
× R


.

Writing fα,b for fα,b,1,0, we have

fα,b,γ ,δ(x) =
1
γ
fα,b


x − δ

γ


, (2.2)

which characterizes the roles of δ and γ as location and scale
parameters, respectively, and that of fα,b as the standardized
version of fα,b,γ ,δ . The parameters α and b determine the shape of
the distribution, with α being the characteristic exponent (or tail
index) and b the skewness parameter—an interpretation justified by
the fact that, for b = 0, fα,b,γ ,δ is symmetric with respect to δ and,
for 0 < b ≤ 1 (resp., −1 ≤ b < 0), skewed to the right (resp., to
the left)— see Section 1.2 of Samorodnitsky and Taqqu (1994) for
details. The notations Fθ and Fα,b,γ ,δ will be used for the distribution
function associated with fθ .

Some particular choices of θ yield well-known distributions,
namely the Gaussian (α = 2, any b), the Cauchy (α = 1, b = 0) and
the Lévy (α = 1/2, b = 1). However, together with the reflected
Lévy density, these are the only instances of stable densities that
can be expressed explicitly in terms of elementary functions. For all
other choices of the parameters, a closed form for fθ is not possible,
and stable distributions either are defined in terms of characteristic
functions and inverse Fourier transforms, or via integral formulas
(see e.g. Nolan (1997) or Zolotarev (1986)).

Throughout, we consider a vector X(n)
:= (X (n)

1 , . . . , X (n)
n )′ of

observations satisfying

X (n)
i = a +

K
k=1

c(n)
ik βk + ϵ

(n)
i , i = 1, . . . , n, (2.3)

for some intercept a ∈ R and the regression parameters β :=

(β1, . . . , βK )′ ∈ RK ; c(n)
i1 , . . . , c(n)

iK (i = 1, . . . , n) are regression
constants, and {ϵ

(n)
i , i ∈ N} is a sequence of nonobservable i.i.d.

errors with stable density fθ, θ = (α, b, γ , 0) ∈ Θ.
The construction of our R-estimators is based on the uniform

local asymptotic normality (ULAN) property, with respect to β,
of the regression model (2.3) under stable error densities. That
property is established in Hallin et al. (2011) under the following
technical assumptions. Without loss of generality, we impose thatn

i=1 c
(n)
ik = 0 for k = 1, . . . , K ; letting c(n)

i := (c(n)
i1 , . . . , c(n)

iK )′,
C(n)

:= n−1n
i=1 c

(n)
i c(n)

i
′

, we make the following assumptions on
the asymptotic behavior of the regression constants.

Assumption (A1). For all n ∈ N, C(n) is positive definite and
converges, as n → ∞, to a positive definite matrix K−2.

Assumption (A2) (Noether Conditions). For all k = 1, . . . , K , one
has

lim
n→∞


max
1≤t≤n


c(n)
tk

2 n
t=1


c(n)
tk

2
= 0.

Denoting by P(n)
θ,a,β the probability distribution of X(n) under

(2.3), let

Z (n)
i (β) := X (n)

i − a −

K
k=1

c(n)
ik βk, i = 1, . . . , n

stand for the residuals associated with the value β of the
regression parameter: under P(n)

θ,a,β , the Z (n)
i (β)’s thus are i.i.d.

with density f(α,b,γ ,0). Here and in the sequel, we write Z (n)
i (β)

instead of Z (n)
i (a, β) for the sake of simplicity. Although the

quantity appearing in Proposition 2.1 depends on a, the rank-based
statistics 1 (n)

J defined in (2.5) below do not, as the Z (n)
i (β)’s only

enter the definition through their ranks, which do not depend
on a (fortunately so, as a remains an unspecified nuisance). The
following result is proved in Hallin et al. (2011).

Proposition 2.1 (ULAN, Hallin et al., 2011). Suppose that Assump-
tions (A1) and (A2) hold. Fix θ = (α, b, γ , 0) ∈ Θ. Then,
model (2.3) (the family {P(n)

θ,a,β| β ∈ RK
}), is ULAN with respect to

β, with contiguity rate n1/2. More precisely, letting ν(n) := n−
1
2 K(n)

with K(n)
:=

C(n)

−1/2, for all β ∈ RK , all sequences β(n) such that
ν−1(n)(β(n)

− β) = O(1) and all bounded sequences τ(n)
∈ RK ,

Λ
(n)
θ,β(n)

+ν(n)τ(n) := log

dP(n)

θ,a,β(n)
+ν(n)τ(n)/dP

(n)
θ,a,β(n)


= log


n

t=1

fθ(Z
(n)
t (β + ν(n)τ(n)))

 n
t=1

fθ(Z
(n)
t (β))



= τ(n)′∆
(n)
θ (β(n)) −

1
2
τ(n)′τ(n)I(θ) + oP(1)

under H
(n)
θ (β) as n → ∞, where, setting ϕθ := −ḟθ/fθ , with ḟθ the

derivative of x → fθ(x) and

I(θ) :=


∞

−∞

ϕ2
θ (x)fθ(x)dx,

I(θ)IK is the information matrix and

∆
(n)
θ (β) := n−1/2K(n)′

n
i=1

ϕθ


Z (n)
i (β)


c(n)
i

L
−→ N


0, I(θ)IK


(2.4)

the central sequence.
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ULAN, here as in Hallin et al. (2011), is stated under stable
distributions,but of course is well known to hold under any density
f such that f 1/2 is differentiable in quadratic mean; P(n)

θ,a,β , ϕθ and

I(θ) then are to be replacedwith P(n)
f ,a,β ,ϕf := 2D(f 1/2)/f 1/2 and If ,

where D(f 1/2) stands for the quadratic mean derivative of f 1/2 and
If :=


∞

−∞
ϕ2
f (x)f (x)dx. Denote by F that class of densities and by

∆
(n)
f (β) the corresponding central sequences.

2.2. One step R-estimators

The vector R(n)
= R(n)(β) := (R(n)

1 , . . . , R(n)
n ), where R(n)

i =

R(n)
i (β) denotes the rank of the residual Z (n)

i = Z (n)
i (β), i =

1, . . . , n, among Z (n)
1 , . . . , Z (n)

n , is distribution-free as f and a range
over the class of all nonvanishing densities and R, respectively.
Throughout, we consider the class of rank-based statistics

1 (n)
J (β) := n−

1
2 K(n)′

n
i=1

J


R(n)
i

n + 1


c(n)
i , (2.5)

where J : (0, 1) → R is some score generating function satisfying

Assumption (B). The score function J : (0, 1) → R is not
constant, and the difference J1 − J2 between two right-continuous
and square integrable non-decreasing monotone functions J1 and
J2 : (0, 1) → R.

Strongly unimodal densities f trivially satisfy that assumption.6
Except for the Gaussian one, stable densities (2.4) are not strongly
unimodal. However, u → ϕf (F−1(u)) being bounded (in absolute
value) and continuously differentiable, with a derivative changing
signs exactly twice, it has bounded variation, hence can be
expressed as the difference between two monotone increasing
functions; ϕf therefore also can.

The following result summarizes the asymptotic properties of
the rank-based statistics (2.5); see the Appendix for a proof.

Proposition 2.2. Let Assumptions (A1), (A2) and (B) hold. Then,

(i) letting ∆
(n)
J (β) := n−

1
2 K(n)′ n

i=1 J(G(Z (n)
i (β)))c(n)

i , where G
stands for the distribution function associated with a density
g ∈ F , we have, under P(n)

g,a,β , as n → ∞,

1 (n)
J (β) − ∆

(n)
J (β) = oP(1). (2.6)

Hence, for J(u) = ϕf (F−1(u)) with f ∈ F , ∆(n)
J (β) is

asymptotically equivalent,7 under P(n)
f ,a,β , to ∆

(n)
f (β);

(ii) under P(n)
g,a,β (g ∈ F ), 1 (n)

J (β) is asymptotically normal with

mean zero and covariance matrix J(J)IK , where

J(J) :=

 1

0
J2(u)du;

(iii) under Pg,a,β+ν(n)τ (g ∈ F ), 1 (n)
J (β) is asymptotically normal

with mean J(J, g)τ and covariance matrix J(J)IK , where

J(J, g) :=

 1

0
J(u)ϕg(G−1(u))du; (2.7)

6 A density f is called strongly unimodal if f 1/2 is differentiable in quadratic mean
and ϕf is monotone increasing; Gaussian, logistic and double exponential densities
are strongly unimodal.
7 Since central sequences are only defined up to oP(1) terms, ∆ (n)

J (β) thus is a

rank-based version of the central sequence ∆
(n)
f (β).

(iv) 1 (n)
J (β) satisfies the asymptotic linearity property

1 (n)
J (β + ν(n)τ(n)) − 1 (n)

J (β) = −J(J, g)τ(n)
+ oP(1) (2.8)

under P(n)
g,a,β with g ∈ F , as n → ∞.

Under the conditions of Proposition 2.1, the Le Cam one-
step methodology requires the existence of a preliminary root-n
consistent estimator β̂(n) of β. The LAD estimator β̂

(n)
LAD of β, which

we are considering in the sequel, is one possibility, but any other
estimator enjoying root-n consistency under the whole class of
stable densities would be an equally valid candidate.

The LAD estimator (â(n)
LAD, β̂

(n)′

LAD)
′ of (a, β′)′ is obtained by

minimizing the L1-objective function

(â(n)
LAD, β̂

(n)′

LAD)
′
:= argmin

(a,β)∈RK+1

n
i=1

|Z (n)
i (β)|.

In this context, however, a needs not be estimated, as ranks are
insensitive to location shift; we therefore concentrate on β̂

(n)
LAD. In

order to control for the uniformity of local behaviors, a discretized
version β̂

(n)
# of β̂(n)

LAD should be considered in theoretical asymptotic
statements. The discretization trick, which is due to Le Cam,
is quite standard in the context of one-step estimation. While
retaining root-n consistency, discretized estimators indeed enjoy
the important property of asymptotic local discreteness, that is, they
only take a finite number of distinct values, as n → ∞, in β-
centered balls with O(n−1/2) radius. In fixed-n practice, however,
such discretizations are irrelevant (the discretization constant can
be chosen arbitrarily large). For the sake of simplicity, we will
henceforth tacitly assume that β̂(n)

LAD, in asymptotic statements, has
been adequately discretized.

Were J−1(J, g) a known quantity, the one-step R-estimator of
βwould take (since the asymptotic variance of1 (n)

J is proportional

to an identity matrix) the following very simple form:

β̃
(n)
J := β̂

(n)
LAD + ν(n)J−1(J, g) 1 (n)

J (β̂
(n)
LAD). (2.9)

It readily follows from (2.8) (as well as from standard results on
one-step estimation: see, e.g., Proposition 1 in Chapter 6 of Le Cam
and Yang (1990)) that

ν−1(n)(β̃
(n)
J − β) = J−1(J, g) 1 (n)

J (β) + oP(1),

hence, that ν−1(n)(β̃
(n)
J − β) is asymptotically

N (0, (J(J)/J2(J, g))IK )

under P(n)
g,a,β (g ∈ F ). This in turn implies that ν−1(n)

(β̃
(n)
J −β), for J(u) = ϕf (F−1(u)), is asymptoticallyN (0, J−1(J)IK )

under P(n)
f ,a,β , that is, reaches parametric efficiency at correctly

specified density f = g .
Unfortunately, the scalar cross-information quantity J(J, g) is

not known—a phenomenon that does not appear in the usual
one-step method, based on the ‘‘parametric central sequence’’
associated with some correctly identified density f = g . Under
definition (2.9), β̃

(n)
J therefore is not a genuine estimator. That

cross-information quantity J(J, g) thus has to be consistently
estimated. To obtain such a consistent estimator, we adopt here
the idea first developed in Hallin et al. (2006) and generalized in
Cassart et al. (2010).
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For all v > 0, define β̃
(n)

(v) := β̂
(n)
LAD + ν(n)v 1 (n)

J (β̂
(n)
LAD), and

consider the scalar product

h(n)(v) :=

1 (n)

J (β̂
(n)
LAD)

′
1 (n)

J (β̃
(n)

(v)).

Proposition 2.2, the consistency and local asymptotic discreteness
of β̂

(n)
LAD, and the definition of β̃(n)(v) entail that, under P(n)

g,a,β with
g ∈ F ,

h(n)(v) =

1 (n)

J (β̂
(n)
LAD)

′
×

1 (n)

J (β̂
(n)
LAD) − J(J, g) n1/2(K(n))−1(β̃

(n)
(v) − β̂

(n)
LAD)


+ oP(1)

=

1 (n)

J (β̂
(n)
LAD)

′
1 (n)

J (β̂
(n)
LAD) − J(J, g)v 1 (n)

J (β̂
(n)
LAD)


+ oP(1)

= (1 − J(J, g)v) h(n)(0) + oP(1) (2.10)

for any v > 0; this provides the intuition for taking the solution of
h(v) = 0 as an estimation of (J(J, g))−1. And, provided that h(n)(0)
is not oP(1), a consistent estimator of (J(J, g))−1 indeed would be

v̂(n)
:= inf{v > 0 : h(n)(v) < 0}.

More precisely, consider a discretization of the positive half-
line, with vℓ := ℓ/c , ℓ ∈ N, c > 0 a (typically, large) discretizing
constant, the value of which, however, plays no role in asymptotic
statements. Putting

v
(n)
− := min{ℓ such that h(n)(v

(n)
ℓ+1) < 0} and

v
(n)
+ := v

(n)
− +

1
c
,

(2.11)

consider the linear interpolation

v̂(n)
:= v

(n)
−


1 −

h(n)(v
(n)
− )

h(n)(v
(n)
− ) − h(n)(v

(n)
+ )



+ v
(n)
+

h(n)(v
(n)
− )

h(n)(v
(n)
− ) − h(n)(v

(n)
+ )

. (2.12)

It follows from Proposition 2.1 in Cassart et al. (2010) that,
unless h(n)(0) is oP(1), J(J, g) := (v̂(n))−1 provides a consistent
estimator of the cross-information quantity J(J, g). Our one-step
R-estimator then is defined as

β
(n)
J := β̃

(n)
(J−1(J, g)) = β̂

(n)
LAD + ν(n)J−1(J, g) 1 (n)

J (β̂
(n)
LAD).

Now, if J is such that 1 (n)
J (β̂

(n)
LAD) = oP(1), that is, if the Laplace

or double-exponential score function u → JL(u) :=
√
2 sign(u

−1/2), is considered, we have (see Proposition 2.4) β
(n)
JL

= β̂
(n)
LAD +

oP(n−1/2) and β̃
(n)
JL

= β̂
(n)
LAD + oP(n−1/2), so that our estimator

coincides, asymptotically, with the LAD estimator.
The following result (see the Appendix for a proof) summarizes

the asymptotic properties of β
(n)
J .

Proposition 2.3. Let Assumptions (A1), (A2) and (B) hold. Then,
n1/2(β

(n)
J − β) is asymptotically normal with mean zero and covari-

ance matrix

J(J)/J2(J, g)


K2 under P(n)

g,a,β with g ∈ F . Therefore,

letting J(u) = ϕf (F−1(u)), β
(n)
J achieves the parametric efficiency

bound under P(n)
f ,a,β .

In view of Proposition 2.3, the asymptotic relative efficiencies of
our R-estimators clearly coincide with those of the corresponding
tests developed in Hallin et al. (2011). More precisely, we have that

AREg(J1/J2) = J2(J1, g)J(J2)/J2(J2, g)J(J1), (2.13)

where AREg(J1/J2) denotes the asymptotic relative efficiency,
under density g , of the R-estimator β

(n)
J1

, based on the score-

generating function J1, with respect to the R-estimator β
(n)
J2

, based

on the score-generating function J2.
Traditional scores (such as the van der Waerden, Wilcoxon

and Laplace ones) are associated with some classical light-tailed
densities (such as the normal, logistic and double-exponential),
leading to the score-generating functions

JvdW(u) = Φ−1(u), JW(u) =
π
√
3
(2u − 1), and

JL(u) =
√
2 sign(u − 1/2),

respectively, where Φ denotes, as usual, the standard normal dis-
tribution function. The resulting R-estimators are reaching para-
metric efficiency under Gaussian, logistic and double-exponential
densities, respectively. Stable scores, of the form Jθ(x) =

−ḟθ(F−1
θ (x))/fθ(F−1

θ (x)), where fθ is some stable density, also can
be considered, not under closed form, though; we refer to Ap-
pendix B of Hallin et al. (2011), where rank tests based on such
stable scores are discussed, for details. Table 1 and Figs. 1 and 2pro-
vide numerical values of AREs in (2.13) for various estimators and
underlying stable densities. Interestingly, the R-estimators based
on the stable scores for tail index 1.4 uniformly dominate, irrespec-
tive of the asymmetry parameter b, the LAD estimator for all values
of α ∈ [1, 2]. Their AREs with respect to LAD estimators moreover
culminates in the vicinity of α = 1.8, a value which is generally
recognized as a reasonable tail index for financial data.8

To conclude this section, the following result establishes the
asymptotic equivalence between the LAD estimator and the
Laplace R-estimator (based on the score function JL); see the
Appendix for a proof.

Proposition 2.4. Let Assumptions (A1) and (A2) hold. Then, the
difference β

(n)
JL

− β̂
(n)
LAD is oP(n−1/2) as n → ∞ under P(n)

g,a,β for any

g ∈ F such that g is strictly positive at the median G−1( 1
2 ).

As a direct consequence, the ARE (under P(n)
g,a,β with g ∈ F ) of

any estimator β̃
(n)

with respect to β̂
(n)
LAD is equal to the ARE of β̃

(n)

with respect to β
(n)
JL

.

3. Finite-sample performance

This section is devoted to a simulation study of the finite-
sample performances of the various R-estimators described in the
previous sections and some of their competitors, in order to check
whether these performances are are in line with the ARE results of
Table 1.

We generatedM = 1000 samples from twomultiple regression
models,

Y (1)
i = ci1 + ci2 + ϵi, i = 1, . . . , n = 100, (3.14)

8 Dominicy and Veredas (2013) found that the estimated α for 22 major
worldwide market indexes (nine years of daily returns) ranges between 1.55 and
1.90, with an average of 1.75. Similar values have been obtained for other financial
assets, e.g. in Mittnik et al. (2000) or Deo (2002).
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Table 1
AREs of R-estimators with respect to LAD estimators.

Estimators Underlying stable density
α = 2; b = 0 α = 1.8; b = 0 α = 1.8; b = 0.5 α = 0.5; b = 0.5

β
(n)
JW

/β̂
(n)
LAD 1.4999 1.3888 1.3984 1.7776

β
(n)
JvdW

/β̂
(n)
LAD 1.5708 1.3056 1.3285 1.251

β
(n)
JC

/β̂
(n)
LAD 0.6759 0.7880 0.7769 2.007

β
(n)
J1.8;0

/β̂
(n)
LAD 1.4459 1.4183 1.4222 1.6453

β
(n)
J1.8;.5

/β̂
(n)
LAD 1.4452 1.3969 1.4459 1.4432

β
(n)
J.5;.5

/β̂
(n)
LAD 0.0925 0.1099 0.1175 21.2364

AREs for R-estimators based on various scores with respect to the LAD estimator. Columns correspond to
the (stable) densities under which AREs are computed, rows to the scores considered:Wilcoxon (JW), van
derWaerden (JvdW), Cauchy (JC), and three (δ = 0, γ = 1) stable scores (Jα;b); recall that the R-estimator
based on Laplace scores asymptotically coincides with the LAD estimator (see Proposition 2.4).

Fig. 1. AREs of R-estimators based on Wilcoxon, Cauchy and van der Waerden scores, with respect to the LAD estimator, as a function of α and for various values of b.

with two regressors, and

Y (2)
i = ci1 + ci2 + ci3 + ci4 + ϵi, i = 1, . . . , n = 100, (3.15)

with four regressors, both with alpha-stable i.i.d. ϵi’s. The regres-
sion constants cij (the same ones across the 1000 replications)were
drawn (independently) from the uniform distribution on [−1, 1]2
and [−1, 1]4, respectively. Letting 1K := (1, 1, . . . , 1) ∈ RK , the
true values of the regression parameters are thus β = 12 in model
(3.14) and β = 14 in model (3.15).

Denoting by β(n)(j) = (β
(n)
1 (j), . . . , β(n)

K (j))′ (j = 1, . . . ,M;
K = 2 or 4 depending on the model) an estimator β(n) computed
from the jth replication, the empirical bias and empirical mean
square error for the first component β

(n)
1 of β(n) are

BIAS(β(n)) :=
1
M

M
j=1

(β
(n)
1 (j) − 1), and

MSEl(β
(n)) :=

1
M

M
j=1

(β
(n)
1 (j) − 1)2,

respectively; models (3.14) and (3.15) being perfectly symmetric,
efficiency comparisons can be based on that first component only.
These quantities were computed for the least squares β̂

(n)
LS and the

LAD estimators β̂
(n)
LAD, the one-step versions β

(n)
JvdW

, β
(n)
JW

and β
(n)
JL

of the van der Waerden, Wilcoxon and Laplace estimators, and
the one-step R-estimators β

(n)
Jα/b

associated with the stable scores

with tail index α and skewness parameter b (α = 1.8/b = 0;
α = 1.8/b = 0.5; α = 1.2/b = 0; α = 1.2/b = 0.5;
α = 0.5/b = 0.5), respectively. For the sake of comparison, we
also computed the bias and mean square errors associated with
theArgmin (Hodges and Lehmann, 1963; Jurečková, 1971) versions
β

(n)
HL;W, β

(n)
HL;vdW and β

(n)
HL;1.8/0 of the Wilcoxon, van der Waerden,

and stable score (α = 1.8/b = 0) R-estimators; the latter were
computed via the Nelder and Mead (1965) method.

Results are collected in Table 2 for model (3.14) and Table 3
for model (3.15), and confirm the theoretical findings of the
previous sections. Least squares behave quite poorly, and fail
miserably as the tail index decreases, while least absolute
deviations maintain an overall good performance. The empirical
performances of R-estimators are consistent with theoretical ARE
rankings. Depending on the scores and the actual underlying
tail index and skewness parameter, R-estimators may or may
not improve on least absolute deviations. Stable score-based R-
estimators, as a rule, outperform least absolute deviations, as
expected, under correctly specified values of the tail index.

It is worth noting that one-step R-estimators are doing better
than their Hodges–Lehmann counterparts in model (3.15), that
is, when the parameter is of dimension four. This is most
probably due to computational problems related with the Argmin
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Fig. 2. AREs under stable distributions of R-estimators based on various stable scores with respect to the LAD estimator, as a functions of α and b.

approach in higher dimensions; such problems do not occur in
the one-step approach. Further evidence of this phenomenon is
provided in Table 4, where we report results for the one-step and
Hodges–Lehmann versions of the van der Waerden R-estimator in
regression models of the form

Y (2)
i = ci1 + ci2 + · · · + ciK + ϵi, i = 1, . . . , n = 100, (3.16)

with K regressors, K = 6, 10, 15 (same number of replications;
regression constants uniform over [−1, 1]K ). Irrespective of the
underlying stable density, the superiority of the one-step version
quite significantly increases with K .

4. Conclusion

Stable densities constitute a broad and flexible class of
probability density functions, allowing for asymmetry and heavy
tails. Their theoretical properties make them quite appealing in
a variety of applications, including econometric and financial
ones. Traditional inference methods, however, in general are not
valid in models involving stable error: classical tests no longer
satisfy nominal probability level constraints, and estimators, as a
rule, are rate-suboptimal. On the other hand, due to the absence
of closed-form likelihoods, theoretical optimality results are not
easily derived. And, still for the same reason, their practical
implementation is all but straightforward.

In the particular case of linear models with stable errors (with
unspecified tail index α and skewness parameter b), Hallin et al.
(2011) show how rank-based methods provide a powerful and
convenient solution to testing problems. In order to do so, they first
establish the local asymptotically normal nature (ULAN, with root-
n contiguity rates) of linear model experiments with stable errors.
In this paper, we extend their approach to estimation problems.
More particularly, taking full advantage of the ULAN property, we
construct one-step R-estimators for the regression parameter β.
Those estimators are root-n consistent and asymptotically normal,

irrespective of the underlying stable density, and their asymptotic
covariance matrices are obtained as a by-product of the one-step
procedure. Using numerical results derived in Hallin et al. (2011),
we moreover show how to construct the R-estimators associated
with stable scores, achieving parametric optimality at prespecified
values of α and b.

A thorough Monte Carlo study confirms the excellent finite-
sample performances of our one-step R-estimators, which are
shown to outperform not only the traditional OLS and LAD esti-
mator, but also their Argmin or Hodges–Lehmann counterparts.
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Appendix

Proof of Proposition 2.2. Point (i) is a direct consequence of the
Hájek projection theorem. Points (ii) and (iii) follow from point (i),
the central limit theorem and the Le Cam’s Third Lemma. As for
point (iv), Theorem 3.1 in Jurečková (1969) applies. �
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Table 2
Empirical bias and mean square error for various estimators of β in model (3.14).

Estimator Underlying stable density (α/b)
α = 2/b = 0 α = 1.8/b = 0 α = 1.8/b = 0.5 α = 1.2/b = 0 α = 1.2/b = 0.5 α = 0.5/β = 0.5

β̂
(n)
LS

(Bias) 0.00193 −0.00134 0.01385 0.18680 −0.19255 740527.6
(MSE) 0.06770 0.19459 0.27336 124.46 88.070 5.3560e+14

β̂
(n)
LAD

(Bias) 0.00167 −0.00087 0.00502 0.02995 0.00646 −0.02438
(MSE) 0.10674 0.10411 0.11638 0.11560 0.13396 0.23233

β
(n)
JvdW

(Bias) 0.00256 −0.00136 0.00694 0.03376 −0.00243 0.00745
(MSE) 0.06878 0.07694 0.08545 0.15165 0.14499 0.49418

β
(n)
JW

(Bias) 0.00076 0.00015 0.00920 0.02957 −0.00147 −0.00165
(MSE) 0.07234 0.07454 0.08366 0.12060 0.12219 0.29830

β
(n)
JL

(Bias) 0.00167 −0.00087 0.00502 0.02995 0.00646 −0.02438
(MSE) 0.10674 0.10411 0.11638 0.11560 0.13396 0.23232

β
(n)
J1.8/0

(Bias) 0.00250 0.00063 0.00883 0.03046 0.00068 0.00267
(MSE) 0.07088 0.07457 0.08310 0.12976 0.12820 0.36304

β
(n)
J1.8/.5

(Bias) 0.00187 −0.00119 0.01057 0.03284 −0.00037 0.00284
(MSE) 0.07104 0.07683 0.08139 0.13562 0.12398 0.34625

β
(n)
J1.2/0

(Bias) 0.00424 0.00353 0.01373 0.02155 −0.00363 0.01652
(MSE) 0.11613 0.09812 0.11040 0.09641 0.10971 0.17458

β
(n)
J1.2/.5

(Bias) 0.00670 −0.00418 0.01609 0.02735 0.00310 −0.00199
(MSE) 0.11416 0.10382 0.10822 0.11455 0.08917 0.11282

β
(n)
J.5/.5

(Bias) 0.01070 0.03350 0.00357 0.04768 −0.01671 0.00466
(MSE) 0.22575 0.28311 0.24386 0.35926 0.18999 0.12103

β
(n)
HL;vdW

(Bias) −0.01668 −0.01040 −0.00253 0.04306 −0.01664 0.11740
(MSE) 0.07936 0.08958 0.09508 0.20227 0.20441 1.1934

β
(n)
HL;W

(Bias) −0.00672 −0.02019 −0.01113 −0.01052 −0.03408 −0.24449
(MSE) 0.08225 0.09071 0.09702 0.16290 0.14918 0.82852

β
(n)
HL;1.8/0

(Bias) −0.02274 −0.02834 −0.01923 −0.01504 −0.05129 −0.24827
(MSE) 0.09066 0.10291 0.10488 0.18247 0.19072 0.96871

Empirical bias andMSE of the least square β̂
(n)
LS , the LAD β̂

(n)
LAD and various rank-based estimators computed from 1000 replications of model (3.14) with sample size n = 100,

under various stable error distributions.

Table 3
Empirical bias and mean square error for various estimators of β in model (3.15).

Estimator Underlying stable density (α/b)
α = 2/b = 0 α = 1.8/b = 0 α = 1.8/b = 0.5 α = 1.2/b = 0 α = 1.2/b = 0.5 α = 0.5/b = 0.5

β̂
(n)
LS

(Bias) 0.00314 0.01367 −0.01945 −4.09468 −0.09272 −47944.35
(MSE) 0.06339 0.30161 0.12752 15818.91 39.45292 1.23211e+13

β̂
(n)
LAD

(Bias) 0.00693 0.00880 −0.00774 −0.00652 0.00352 −0.00746
(MSE) 0.09995 0.09992 0.09548 0.08495 0.09984 0.21871

β
(n)
JvdW

(Bias) 0.00378 0.00638 −0.01177 −0.00763 −0.01262 −0.01902
(MSE) 0.06463 0.06964 0.07238 0.11369 0.11015 0.35648

β
(n)
JW

(Bias) 0.00542 0.00579 −0.01236 −0.00624 −0.00774 −0.01330
(MSE) 0.06811 0.06847 0.06988 0.09038 0.09127 0.22657

β
(n)
JL

(Bias) 0.00693 0.00880 −0.00774 −0.00652 0.00352 −0.00746
(MSE) 0.09995 0.09992 0.09548 0.08495 0.09984 0.21871

β
(n)
J1.8/0

(Bias) 0.00499 0.00531 −0.01221 −0.00445 −0.00980 −0.01629
(MSE) 0.06755 0.06735 0.07021 0.09908 0.09562 0.27044

β
(n)
J1.8/.5

(Bias) 0.00339 0.00526 −0.01109 −0.00438 −0.01151 −0.01722
(MSE) 0.06686 0.06914 0.06977 0.10095 0.09397 0.25358

β
(n)
J1.2/0

(Bias) 0.00802 0.00608 −0.01297 0.00682 0.00404 0.00226
(MSE) 0.10763 0.09229 0.08986 0.07061 0.08406 0.13542

β
(n)
J1.2/.5

(Bias) 0.00291 0.00024 −0.01401 0.00396 −0.00231 −0.00573
(MSE) 0.10332 0.09233 0.08567 0.09036 0.07037 0.07636

β
(n)
J.5/.5

(Bias) 0.03400 0.03653 −0.02823 −0.05925 −0.00469 −0.01970
(MSE) 0.30150 0.35030 0.28818 0.43049 0.18807 0.19423

β
(n)
HL;vdW

(Bias) 0.00401 0.00634 −0.01208 −0.00704 −0.01234 −0.02138
(MSE) 0.06513 0.06968 0.07266 0.11310 0.10956 0.38167

β
(n)
HL;W

(Bias) 0.00513 0.00623 −0.01285 −0.00547 −0.00755 −0.01470
(MSE) 0.06854 0.06855 0.07006 0.09010 0.09100 0.23734

β
(n)
HL;1.8/0

(Bias) 0.00494 0.00582 −0.01245 −0.00396 −0.01081 −0.01793
(MSE) 0.06783 0.06753 0.07037 0.09854 0.09594 0.28729

Empirical bias andMSE of the least square β̂
(n)
LS , the LAD β̂

(n)
LAD and various rank-based estimators computed from 1000 replications of model (3.15) with sample size n = 100,

under various stable error distributions.
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Table 4
One-step R-estimation versus Argmin.

Estimator Underlying stable density (α/b)
α = 2/b = 0 α = 1.8/b = 0 α = 1.8/b = 0.5 α = 1.2/b = 0 α = 1.2/b = 0.5 α = 0.5/b = 0.5

K = 6

β
(n)
JvdW

(Bias) −0.01991 −0.00485 0.01084 −0.01890 0.02246 0.00162
(MSE) 0.07707 0.08821 0.08935 0.16485 0.15258 0.61554

β
(n)
HL;vdW

(Bias) −0.19519 −0.19834 −0.19202 −0.36809 −0.30435 −0.59222
(MSE) 0.24257 0.27483 0.27461 0.58981 0.52245 2.51344

K = 10

β
(n)
JvdW

(Bias) −0.00877 0.00607 0.00187 −0.00807 −0.01376 0.06003
(MSE) 0.07834 0.09133 0.08641 0.16835 0.15545 1.4346

β
(n)
HL;vdW

(Bias) −0.91080 −0.89626 −0.92196 −1.00979 −0.99976 −0.97662
(MSE) 1.04321 1.07289 1.09949 1.50269 1.43327 3.23870

K = 15

β
(n)
JvdW

(Bias) −0.00374 −0.01421 −0.00575 0.02479 0.00271 0.01123
(MSE) 0.08894 0.10969 0.10539 0.20918 0.19621 2.00335

β
(n)
HL;vdW

(Bias) −1.07573 −1.11915 −1.11057 −1.23107 −1.21492 −1.31910
(MSE) 1.19685 1.33319 1.32890 1.91879 1.88120 4.32374

Empirical bias and MSE of the one-step and Argmin versions β
(n)
JvdW

and β(n)

HL;vdW
of the van der Waerden R-estimator computed from 1000 replications of model (3.16) with

K = 6, 10, 15, sample size n = 100 and various stable error distributions.

Proof of Proposition 2.3. In view of (2.9), we have that

n1/2(β
(n)
J − β) = n1/2(β̂

(n)
LAD − β) + K(n)J−1(J, g) 1 (n)

J (β̂
(n)
LAD).

(A.17)

The consistency of J−1(J, g) together with point (iv) of Proposi-
tion 2.2 entail that, under P(n)

g,a,β with g ∈ F , as n → ∞,

K(n)J−1(J, g) 1 (n)
J (β̂

(n)
LAD)

= K(n)J−1(J, g) 1 (n)
J (β) − n1/2(β̂

(n)
LAD − β) + oP(1). (A.18)

Combining (A.17) and (A.18), we readily obtain

n1/2(β
(n)
J − β) = K(n)J−1(J, g) 1 (n)

J (β) + oP(1) (A.19)

under P(n)
g,a,β with g ∈ F , as n → ∞. The result follows using

Proposition 2.2. �
Proof of Proposition 2.4. Without loss of generality, we assume
that the ϵi’s have median zero. In this proof, we show that
n1/2(β̂

(n)
LAD−β) = n1/2(β

(n)
JL

−β)+oP(1). From the proof of Theorem

4.1 in Koenker (2005) (see also Bassett and Koenker, 1978), we
have that (least absolute deviation estimation is equivalent to
median regressionhence quantile regressionwith quantile of order
τ = 1/2)

n1/2(β̂
(n)
LAD − β) =

n−1/2

2g(0)
K(n)K(n)′

n
i=1

sign(ϵi)ci + oP(1) (A.20)

under P(n)
g,a,β . Now, since JL(u) =

√
2sign(u − 1/2), we have that

J(JL, g) =
√
2
 1

0
sign(u − 1/2)ϕg(G−1(u))du

= −
√
2


∞

−∞

sign(G(v) − G(0))g ′(v)dv

=
√
2
 0

−∞

g ′(v)dv −
√
2


∞

0
g ′(v)dv

= 2
√
2g(0). (A.21)

Using (A.21), (A.19) in the proof of Proposition 2.3 and point (i) of
Proposition 2.2, we obtain that

n1/2(β
(n)
JL

− β) = K(n)J−1(JL, g)1 (n)

JL
(β) + oP(1)

= K(n)J−1(JL, g)∆
(n)
JL

(β) + oP(1)

=
n−1/2

2g(0)
K(n)K(n)′

n
i=1

sign

G(ϵi) −

1
2


ci + oP(1)

=
n−1/2

2g(0)
K(n)K(n)′

n
i=1

sign (ϵi) ci + oP(1),

which, in view of (A.20), completes the proof. �
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